首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
The minority carrier lifetime of as-grown germanium-doped Czochralski (GCZ) silicon wafers doped with germanium concentrations [Ge]=10^16-10^18 cm^-3 is investigated in comparison with conventional CZ silicon samples. It is found that the lifetime distribution along the ingot changes with the variation of[Ge]. There is a critical value of [Ge] = 10^16 cm^-3 beyond which Ge can obviously influence the lifetime of as-grown ingots. This phenomenon is considered to be associated with the competition or combination between the oxygen related thermal donors (TDs) and electrically active Ge-related complexes. The related formation mechanisms and distributions are also discussed.  相似文献   

2.
We report on the high-resolution optical Fourier-transform spectroscopy of the LiYF4:Tm3+ crystals. Splitting of several lines in the optical low-temperature polarized spectra was observed. We show that these splittings are caused by (i) the hyperfine interaction, (ii) the isotopic disorder in the lithium sublattice, and (iii) the interionic interaction between neighboring Tm ions. It is the first observation of the hyperfine splitting in the spectra of the Tm3+ ions in crystals. From the experimentally measured hyperfine splitting we evaluate the magnetic field at the thulium nucleus and calculate the magnetic g-factors of the excited crystal-field levels.  相似文献   

3.
High-resolution spectra of holmium-doped LiYF4 crystals at low temperatures were investigated. It was shown that weak lines observed near some main lines in the spectra belong to the Ho3+Ho3+ pair centers. These satellites can be explained by two types of pairs with the magnetic dipole coupling within each of them, provided that a change of the crystal field due to lattice distortion is taken into account.  相似文献   

4.
We have measured systematically the Cr-related zero-phonon lines in the 0.839 eV region in a series of plastically-bent semi-insulating GaAs:Cr with compressive or tensile stress along various bending axes. As a result, it has been found that the residual stress in semi-insulating GaAs:Cr wafers can be sensitively characterized from a splitting and energy shift of the 0.839 eV Cr-related luminescence lines in the low-temperature photoluminescence spectra. Furthermore, we have applied this method to the characterization of the interface stress of OMVPE-grown ZnSe/GaAs:Cr heterostructure and found that anomalous stress exists at the ZnSe/GaAs interface, which is inconsistent with stress predicted by the lattice mismatch of the heterojunctions.  相似文献   

5.
Variability on Raman Shift to Stress Coefficient of Porous Silicon   总被引:1,自引:0,他引:1       下载免费PDF全文
Porous silicon film is a capillary-like medium, which is able to reveal different meso-elastic modulus with porosity. During the preparation of porous silicon samples, the capillary force is a non-classic force related to the liquid evaporation which directly influences the evolution of residual stress. In this study, a non-linear relation of Raman shift to stress coefficient and the porosity is obtained from the elastic modulus measured with nano-indentation by Bellet et al. [J. Appl. Phys. 60 (1996) 3772] Dynamic capillarity during the drying process of porous silicon is investigated using micro-Raman spectroscopy, and the results reveal that the residual stress resulted from the capillarity increased rapidly. Indeed, the dynamic capillarity has a close relationship with a great deal of micro-pore structures of the porous silicon.  相似文献   

6.
Sulfur doping of silicon beyond the solubility limit by femtosecond laser irradiation leads to near-unity broadband absorption of visible and infrared light and the realization of silicon-based infrared photodetectors. The nature of the infrared absorption is not yet well understood. Here we present a study on the reduction of infrared absorptance after various anneals of different temperatures and durations for three chalcogens (sulfur, selenium, and tellurium) dissolved into silicon by femtosecond laser irradiation. For sulfur doping, we irradiate silicon in SF6 gas; for selenium and tellurium, we evaporate a film onto the silicon and irradiate in N2 gas; lastly, as a control, we irradiated untreated silicon in N2 gas. Our analysis shows that the deactivation of infrared absorption after thermal annealing is likely caused by dopant diffusion. We observe that a characteristic diffusion length—common to all three dopants—leads to the reduction of infrared absorption. Using diffusion theory, we suggest a model in which grain size of the resolidified surface layer can account for this characteristic diffusion length, indicating that deactivation of infrared absorptance may be caused by precipitation of the dopant at the grain boundaries.  相似文献   

7.
We have calculated variationally the ground state binding energy of a hydrogenic donor impurity in a parabolic quantum well in the presence of crossed electric and magnetic fields. These homogeneous crossed fields are such that the magnetic field is parallel to the heterostructure layers and the electric field is applied perpendicular to the magnetic field. The dependence of the donor impurity binding energy to the well width and the strength of the electric and magnetic fields are discussed. We hope that the obtained results will provide important improvements in device applications, especially for a suitable choice of both fields in the narrow well widths.  相似文献   

8.
In this paper, we have investigated the Einstein relation for the diffusivity-to-mobility ratio (DMR) under magnetic quantization in non-linear optical materials on the basis of a newly formulated electron dispersion law by considering the crystal field constant, the anisotropies of the momentum-matrix element and the spin-orbit splitting constant, respectively, within the frame work of k·p formalism. The corresponding result for the three-band model of Kane (the conduction electrons of III-V, ternary and quaternary compounds obey this model) forms a special case of our generalized analysis. The DMR under magnetic quantization has also been investigated for II-VI (on the basis of Hopfield model), bismuth (using the models of McClure and Choi, Cohen, Lax and parabolic ellipsoidal, respectively), and stressed materials (on the basis of model of Seiler et al.) by formulating the respective electron statistics under magnetic quantization incorporating the respective energy band constants. It has been found, taking n-CdGeAs2, n-Hg1−xCdxTe, p-CdS, and stressed n-InSb as examples of the aforementioned compounds, that the DMR exhibits oscillatory dependence with the inverse quantizing magnetic field due to Subhnikov de Haas (SdH) effect with different numerical values. The DMR also increases with increasing carrier degeneracy and the nature of oscillations are totally dependent on their respective band structures in various cases. The classical expression of the DMR has been obtained as a special case from the results of all the materials as considered here under certain limiting conditions, and this compatibility is the indirect test of our generalized formalism. In addition, we have suggested an experimental method of determining the DMR for degenerate materials under magnetic quantization having arbitrary dispersion laws. The three applications of our results in the presence of magneto-transport have further been suggested.  相似文献   

9.
The experimental values of the energy levels of Er3+, Dy3+, and Nd3+ in BaY2F8 were fitted to a single-ion Hamiltonian containing free-ion and crystal-field interactions. The crystal-field parameters so evaluated were then analyzed by using Newman's Superposition Model. The agreement between the two sets of parameters is good, provided a possible distortion of the F- polyhedron around the rare-earth site is taken into account. The effects of a possible displacement of the rare-earth ion substituting for Y3+ are also evaluated. Received 14 May 2002 / Received in final form 12 July 2002 Published online 17 September 2002  相似文献   

10.
Recent experiments show that on rather thick Co films deposition of Cu or adsorption of CO or C can switch the magnetization direction along the surface normal. We present semi-empirical self-consistent tight-binding calculations for a semi-infinite hcp Co(0001) crystal. It appears that the contribution of the magnetic anisotropy-energy from the surface layer favors the in-plane alignment of magnetic moments. Various surface perturbations (Cu deposition or CO adsorption, artificial suppression of surface magnetization), however, reduce this contribution considerably or even change the sign of the electronic part of the magnetic anisotropy energy, thus making conditions for perpendicular magnetization more favourable.  相似文献   

11.
Iron and its complexes in silicon   总被引:3,自引:0,他引:3  
This article is the first in a series of two reviews on the properties of iron in silicon. It offers a comprehensive summary of the current state of understanding of fundamental physical properties of iron and its complexes in silicon. The first section of this review discusses the position of iron in the silicon lattice and the electrical properties of interstitial iron. Updated expressions for the solubility and the diffusivity of iron in silicon are presented, and possible explanations for conflicting experimental data obtained by different groups are discussed. The second section of the article considers the electrical and the structural properties of complexes of interstitial iron with shallow acceptors (boron, aluminum, indium, gallium, and thallium), shallow donors (phosphorus and arsenic) and other impurities (gold, silver, platinum, palladium, zinc, sulfur, oxygen, carbon, and hydrogen). Special attention is paid to the kinetics of iron pairing with shallow acceptors, the dissociation of these pairs, and the metastability of iron–acceptor pairs. The parameters of iron-related defects in silicon are summarized in tables that include more than 30 complexes of iron as detected by electron paramagnetic resonance (EPR) and almost 20 energy levels in the band gap associated with iron. The data presented in this review illustrate the enormous complexing activity of iron, which is attributed to the partial or complete (depending on the temperature and the conductivity type) ionization of iron as well as the high diffusivity of iron in silicon. It is shown that studies of iron in silicon require exceptional cleanliness of experimental facilities and highly reproducible diffusion and temperature ramping (quenching) procedures. Properties of iron that are not yet completely understood and need further research are outlined. Received: 14 December 1998 / Accepted: 22 February 1999 / Published online: 26 May 1999  相似文献   

12.
Current-voltage (I-V) measurements were carried out on Schottky diodes fabricated on undoped and on metal-doped p-type silicon. The metals used are gold, platinum, erbium and niobium. The I-V data were used to extract the saturation current, the ideality factor and the Schottky barrier height for each of the five diodes. These parameters were correlated to the defect levels generated by the metals in silicon. The results show that in all cases the silicon has become relaxation-like after doping since the device current is Ohmic. This is in agreement with the existence of the midgap defect in all the doped devices as compiled from the literature. Such metal doped (or relaxation) devices have been found to perform better as radiation-hard particle detectors.  相似文献   

13.
An investigation on the equation of state of the isospin asymmetric, hot, dense matter of nucleons and deltas is performed based on the relativistic mean field theory. The QHD-Ⅱ-type effective Lagrangian extending to the delta degree of freedom is adopted. Our re,sults show that the equation of state is softened due to the inclusion of the delta degree of freedom. The baryon resonance isomer may occur depending on the delta-meson coupling. The results show that the densities for appearing the baryon resonance isomer, the densities for starting softening the equation of state and the extent of the softening depend not only on the temperature, the coupling strengths but also the isospin asymmetry of the baryon matter.  相似文献   

14.
We present our experimental studies on the effects of the pumping sizes on THz radiation based on ultrashort light pulse optical rectification for high spatial resolution T-Ray imaging. Our experiments show that high spatial resolution T-ray imaging requires both thin THz emitter and sample, and rigorous tolerance of the gap between the sample and the emitter, as well as small pumping size which usually much smaller compared with THz wavelength. Such a small pumping size results in dramatic decrease of the THz wave power, which originates from strong diffraction of THz wave, the depolarization of the focused tightly pumping beam, the spatial filtering of the emitter exit-surface, and the strong phase-mismatching between the pumping and the high spatial Fourier components of the THz signal, rather than two-photon absorption.  相似文献   

15.
By using a genetic algorithm, geometry parameters of large cross-sectional S-bend rib waveguides are optimized aiming at the least total loss when the propagation loss is considered. Optimized results axe presented as an example of S-bend rib waveguides based on silicon-on-insulator (SOI) 4 × 4 optical switches. The value of 2 dB/cm is given to the propagation loss according to the experimental results. The simulation results indicate that the total loss drops from 1.0002rib down to 0.4375dB without considering a lateral offset. If the offset is adopted, the total loss reduces from 0.5463dB to 0.2365dB. In addition, the effect of the rib height ratio on the loss is analysed, and the optimal ratio is obtained to be 0.55.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号