首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Single-shot ablation threshold for thin chromium film was studied using 266 nm, femtosecond laser pulses. Chromium is a useful material in the nanotechnology industry and information on ablation threshold using UV femtosecond pulses would help in precise micromachining of the material. The ablation threshold was determined by measuring the ablation crater diameters as a function of incident laser pulse energy. Absorption of 266 nm light on the chromium film was also measured under our experimental conditions, and the absorbed energy single-shot ablation threshold fluence was \(46 \pm 5\)  mJ/cm2. The experimental ablation threshold fluence value was compared to time-dependent heat flow calculations based on the two temperature model for ultrafast laser pulses. The model predicts a value of 31.6 mJ/cm2 which is qualitatively consistent with the experimentally obtained value, given the simplicity of the model.  相似文献   

2.
In this paper we present femtosecond laser ablation studies of the metals copper, silver and tungsten. Measurements of the threshold fluence determined from the hole diameters versus fluence provide incubation coefficients of the three materials, which are found to be equal within one standard deviation. Furthermore, we have determined the single-shot threshold fluences to be 1.7±0.3 J/cm2, 1.5±0.4 J/cm2 and 0.44±0.02 J/cm2 for copper, silver and tungsten, respectively. These are in good agreement with theoretical values calculated neglecting heat diffusion.  相似文献   

3.
The ablation process of thin copper films on fused silica by picosecond laser pulses is investigated. The ablation area is characterized using optical and scanning electron microscopy. The single-shot ablation threshold fluence for 40 ps laser pulses at 1053 nm has been determinated toF thres = 172 mJ/cm2. The ablation rate per pulse is measured as a function of intensity in the range of 5 × 109 to 2 × 1011 W/cm2 and changes from 80 to 250 nm with increasing intensity. The experimental ablation rate per pulse is compared to heat-flow calculations based on the two-temperature model for ultrafast laser heating. Possible applications of picosecond laser radiation for microstructuring of different materials are discussed.  相似文献   

4.
Non-thermal and thermal processes due to femtosecond laser ablation of aluminum (Al) at low, moderate, and high-fluence regimes are identified by Atomic Force Microscope (AFM) surface topography investigations. For this purpose, surface modifications of Al by employing 25 fs Ti: sapphire laser pulses at the central wavelength of 800 nm have been performed to explore different nano- and microscale features such as hillocks, bumps, pores, and craters. The mechanism for the formation of these diverse kinds of structures is discussed in the scenario of three ablation regimes. Ultrafast electronic and non-thermal processes are dominant in the lower fluence regime, whereas slow thermal processes are dominant at the higher fluence regime. Therefore, by starting from the ablation threshold three different fluence regimes have been chosen: a lower fluence regime (0.06–0.5 J cm?2 single-shot irradiation under ultrahigh vacuum condition and 0.25–2.5 J cm?2 single-shot irradiation in ambient condition), a moderate-fluence regime (0.25–1.5 J cm?2 multiple-shot irradiation), and a high-fluence regime 2.5–3.5 J cm?2 multiple-shot irradiation. For the lower fluence (gentle ablation) regime, around the ablation threshold, the unique appearance of individual, localized Nano hillocks typically a few nanometers in height and less than 100 nm in diameter are identified. These Nano hillock-like features can be regarded as a nonthermal, electronically induced phase transition process due to localized energy deposition as a result of Coulomb explosion or field ion emission by surface optical rectification. At a moderate-fluence regime, slightly higher than ablation threshold multiple-pulse irradiation produces bump-formation and is attributed to ultrafast melting (plasma formation). The high-fluence regime results in greater rates of material removal with highly disturbed and chaotic surface of Al with an appearance of larger protrusions at laser fluence well above the ablation threshold. These nonsymmetrical shapes due to inhomogeneous nucleation, cluster formation, and resolidification of a metallic surface after melting are attributable to slow thermal processes (ps time scale).  相似文献   

5.
Ultra-fast electronic and thermal processes for the energy deposition mechanism during femtosecond laser ablation of Si have been identified by means of atomic force microscopy and Raman scattering techniques. For this purpose, Si targets were exposed with 800-nm, 25-fs Ti:sapphire laser pulses for different laser fluencies in air and under UHV (ultra high vacuum) conditions. Various nano- and microstructures on the surface of the irradiated samples are revealed by a detailed surface topography analysis. Ultra-fast electronic processes are dominant in the lower-fluence regime. Therefore, by starting from the ablation threshold three different fluence regimes have been chosen: a lower-fluence regime (0.06–0.5 J?cm?2 single-shot irradiation under UHV condition and 0.25–2.5 J?cm?2 single-shot irradiation in ambient condition), a moderate-fluence regime (0.25–1.5 J?cm?2 multiple-shot irradiation), and a higher-fluence regime (2.5–3.5 J?cm?2 multiple-shot irradiation). Around the ablation threshold fluence, most significant features identified at the Si surface are nanohillock-like structures. The appearance of these nanohillocks is regarded as typical features for fast electronic processes (correlated with existence of hot electrons) and is explained on the basis of Coulomb explosion. The growth of these typical features (nanohillocks) by femtosecond laser irradiation is an element of novelty. At moderate irradiation fluence, a ring-shaped ablation with larger bumps and periodic surface structures is observed and is considered as a footprint of ultra-fast melting. Further increase in the laser fluence, i.e. a higher-fluence regime, resulted in strong enhancement of the thermal process with the appearance of larger islands. The change in surface topography provides an innovative clue to differentiate between ultra-fast electronic processes, i.e. Coulomb explosion (sub-100 fs) at a lower-fluence regime and ultra-fast melting (hundreds of fs) at a moderate-fluence regime, and slow thermal processes (ps time scale) at a higher-fluence regime. These fast electronic and thermal processes are well correlated to structural and crystallographic alterations, inferred from Raman spectroscopy.  相似文献   

6.
The ablation threshold and Laser-induced periodic surface structure (LIPSS) formation on copper thin film were investigated using a picosecond laser (Nd:YAG laser: 266 nm, 42 ps, 10 Hz). We show that the ablation threshold varies with respect to the number of laser shots (N) on two different substrates. The single-shot ablation threshold was estimated to be close to 170 ± 20 mJ/cm2. The incubation coefficient was estimated to be 0.68 ± 0.03 for copper thin films on silicon and glass substrates. In addition, morphology changes of the ablated regions, in the same spot area, were studied as a function of fluence and number of laser shots. An intermediate structure occurred with a mix of low spatial frequency LIPSS (LSFL), high spatial frequency LIPSS (HSFL) and regular spikes at a fluence F < 250 mJ/cm2 and 1,000 < N ≤ 10.000 shots. LSFL was observed with a spatial period close to the irradiation wavelength and an orientation perpendicular to the laser polarization, and HSFL with a spatial period of ~120 nm and a parallel orientation. Lastly, the global relationship between the laser parameters (i.e. fluence and number of shots) and LIPSS formation was established in the form of a 2D map.  相似文献   

7.
The ablation rate when drilling fine holes having large aspect ratios in silicon substrates with femtosecond laser pulses was estimated from mechanically ground cross sections of the ablated holes. The ablation rate shows a dramatic change at the depth at which the laser pulse reaches a certain fluence, which is nearly constant when the initial laser fluence was varied from 14.5 to 59.4 J/cm2. The ablation rate, threshold fluence, in three fluence domains, and the transition fluences at which the ablation rate shows a dramatic change, were derived. However, when a pulse energy of 200 μJ was used a much greater ablation rate was obtained, suggesting that another fluence domain for larger ablation rates exists. The experimentally obtained hole depths as a function of shot numbers were reproduced by a theoretical model, which incorporates laser pulse attenuation in the holes that is the same as that in waveguides for some attenuation coefficient and ablation rates for three fluence domains. PACS 42.62.-b; 42.65.Re; 78.40.Fy; 78.47.+p; 81.20.Wk  相似文献   

8.
We report measurements of the laser induced breakdown threshold in lithium tantalate with different number of pulses delivered from a chirped pulse amplification Ti: sapphire system. The threshold fluences were determined from the relation between the diameter D2 of the ablated area and the laser fluence F0. The threshold of lithium tantalite under single-shot is found to be 1.84 J/cm2, and the avalanche rate was determined to be 1.01 cm2/J by calculation. We found that avalanche dominates the ablation process, while photoionization serves as a free electron provider.  相似文献   

9.
Copper atoms, clusters and ions were generated by ablation of clean and CO-covered polycrystalline copper surfaces under UHV conditions, using a high peak power, pulsed excimer laser as the energy source. The species in the vapor phase were characterized by time-resolved mass spectrometry and optical detection of laser induced fluorescence. The laser power density threshold of vaporization for the clean copper (300(30) MW/cm2) was significantly lower than the threshold in the case of CO-covered copper surfaces (> 400 MW/cm2).  相似文献   

10.
Laser microprocessing of several biopolymers from renewable resources is studied. Three proteinic materials were either extracted from the extracellular matrix like Silk Fibroin/Sericin and collagen, or coming from a commercial source like gelatin. All can find future applications in biomedical experimentation, in particular for cell scaffolding. Films of ∼hundred of microns thick were made by aqueous solution drying and laser irradiation. Attention is paid to the properties making them processable with two laser sources: the ultraviolet and nanosecond (ns) KrF (248 nm) excimer and the infrared and femtosecond (fs) Yb:KGW laser. The UV radiation is absorbed in a one-photon resonant process to yield ablation and the surface foaming characteristics of a laser-induced pressure wave. To the contrary, resonant absorption of the IR photons of the fs laser is not possible and does not take place. However, the high field of the intense I>∼1012 W/cm2 femtosecond laser pulse ionizes the film by the multiphoton absorption followed by the electron impact mechanism, yielding a dense plasma capable to further absorb the incident radiation of the end of the pulse. The theoretical model of this absorption is described in detail, and used to discuss the presented experimental effects (cutting, ablation and foaming) of the fs laser. The ultraviolet laser was used to perform simultaneous multiple spots experiments in which energetic foaming yields melt ejection and filament spinning. Airborne nanosize filaments “horizontally suspended by both ends” (0.25 μm diameter and 10 μm length) of silk biopolymer were observed upon irradiation with large fluences.  相似文献   

11.
Femtosecond laser (180 fs, 775 nm, 1 kHz) ablation characteristics of the nickel-based superalloy C263 are investigated. The single pulse ablation threshold is measured to be 0.26±0.03 J/cm2 and the incubation parameter ξ=0.72±0.03 by also measuring the dependence of ablation threshold on the number of laser pulses. The ablation rate exhibits two logarithmic dependencies on fluence corresponding to ablation determined by the optical penetration depth at fluences below ∼5 J/cm2 (for single pulse) and by the electron thermal diffusion length above that fluence. The central surface morphology of ablated craters (dimples) with laser fluence and number of laser pulses shows the development of several kinds of periodic structures (ripples) with different periodicities as well as the formation of resolidified material and holes at the centre of the ablated crater at high fluences. The debris produced during ablation consists of crystalline C263 oxidized nanoparticles with diameters of ∼2–20 nm (for F=9.6 J/cm2). The mechanisms involved in femtosecond laser microprocessing of the superalloy C263 as well as in the synthesis of C263 nanoparticles are elucidated and discussed in terms of the properties of the material.  相似文献   

12.
Nanosecond pulsed laser ablation of silicon in liquids   总被引:2,自引:0,他引:2  
Laser fluence and laser shot number are important parameters for pulse laser based micromachining of silicon in liquids. This paper presents laser-induced ablation of silicon in liquids of the dimethyl sulfoxide (DMSO) and the water at different applied laser fluence levels and laser shot numbers. The experimental results are conducted using 15 ns pulsed laser irradiation at 532 nm. The silicon surface morphology of the irradiated spots has an appearance as one can see in porous formation. The surface morphology exhibits a large number of cavities which indicates as bubble nucleation sites. The observed surface morphology shows that the explosive melt expulsion could be a dominant process for the laser ablation of silicon in liquids using nanosecond pulsed laser irradiation at 532 nm. Silicon surface’s ablated diameter growth was measured at different applied laser fluences and shot numbers in both liquid interfaces. A theoretical analysis suggested investigating silicon surface etching in liquid by intense multiple nanosecond laser pulses. It has been assumed that the nanosecond pulsed laser-induced silicon surface modification is due to the process of explosive melt expulsion under the action of the confined plasma-induced pressure or shock wave trapped between the silicon target and the overlying liquid. This analysis allows us to determine the effective lateral interaction zone of ablated solid target related to nanosecond pulsed laser illumination. The theoretical analysis is found in excellent agreement with the experimental measurements of silicon ablated diameter growth in the DMSO and the water interfaces. Multiple-shot laser ablation threshold of silicon is determined. Pulsed energy accumulation model is used to obtain the single-shot ablation threshold of silicon. The smaller ablation threshold value is found in the DMSO, and the incubation effect is also found to be absent.  相似文献   

13.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

14.
对密度为90 mg/cm3的PMP泡沫材料的飞秒激光烧蚀结果进行了分析,推导出该材料在脉宽50 fs、波长800 nm、重复频率为1000 Hz的飞秒激光作用下的蚀除阈值为0.91 J/cm2(100个激光脉冲),获得了烧蚀直径分别随激光功率、脉冲数及聚焦物镜数值孔径的变化规律。相同飞秒激光加工系统下,对比了铜箔上获得的烧蚀形状,确定了PMP泡沫材料本身的多孔洞及其分布不均匀是造成烧蚀区域的形状不规则的重要因素。PMP泡沫在较高能量或是较长时间的飞秒激光作用下,烧蚀区域发生碳化的原因是由热作用引发的。提出了一种基于激光束耦合的飞秒激光切割厚度大于1 mm的薄膜-泡沫材料的方法,并获得了切割厚度大于1.5 mm、切割侧壁与光束光轴夹角小于5、切割面整洁的薄片。  相似文献   

15.
In this paper the surface topography of titanium samples irradiated by femtosecond laser pulses is described. When the fluence is about 0.5 J/cm2 periodic ripples with a period of about 700 nm are formed. For fluences between 0.5 and 2 J/cm2, a microcolumnar surface texture develops in the center of the irradiated spots and ripples are formed in the periphery of the spots. When experiments are performed with a non-stationary sample, the microcolumns exhibit ripples similar to those observed when the radiation fluence is about 0.5 J/cm2 and in the outer regions of the irradiated areas for fluences between 0.5 and 2 J/cm2. Since the energy distribution in the transverse cross-section of the laser beam is Gaussian, we conclude that the ripples form when the microcolumns are subjected to fluences near the melting threshold of the material at the trailing edge of the moving laser beam.  相似文献   

16.
The selective removal and patterning of a typical pseudo-spin-valve structure, consisting of a Co(20 nm)/ Cu(6 nm)/Co(3 nm) trilayer, by femtosecond laser has been examined in terms of irradiation parameters and layer structure. Ablation thresholds of the individual Co and Cu thin films and the SiO2/Si substrate have been measured for single-shot irradiation with a 200 femtosecond (fs) laser pulses of a Ti:sapphire laser operating at 775 nm. Ablation of the entire trilayer structure was characterized by a sequential removal of the layers at a threshold level of fluence of 0.28 J/cm2. Atomic Force Microscopy, optical microscopy, profilometry and Sputtered Neutral Mass Spectroscopy were employed to characterize the laser-induced single-shot laser selective removal and patterned areas. As a result, two phenomena were found to characterize the laser process: (i) selective removal of the Co and Cu layer due to the change of the laser fluence and (ii) regular pillars’ area of Co/Cu/Co could be achieved in a regular manner with the lowest pillar width size of 1.5 μm. Ablation through the layers was accompanied by the formation of bulges at the edges of the pillars, which was the biggest inconvenience in lowering the pillar size through the femtosecond laser process.  相似文献   

17.
We report on high intensity single-shot laser ablation of monocrystalline silicon with a nanosecond Nd:YAG at 355 nm. It is shown that for incident laser intensities exceeding ∼11.5 GW/cm2 on the silicon surface, unusually high etch depths can be achieved reaching values up to 60 μm. The results support previous observations of dramatic increase in etch rates in single-shot laser ablation at 266 nm. A laser-induced explosive boiling mechanism together with secondary plasma heating is believed to be associated with this effect.  相似文献   

18.
A gold thin film was machined by laser ablation using a femtosecond laser with mask patterns in the shape of lines and numbers. The patterns were successfully transferred with proper focusing and laser fluence. The optimal femtosecond laser fluence to keep the line width was about 5.2 mJ/cm2 on the mask, and 99 mJ/cm2 on the film. The processing resolution was 13 μm, and the narrowest line width was about 4 μm.  相似文献   

19.
Femtosecond laser technology, used as a minimally invasive tool in intrastromal refractive surgery, may also have potential as a useful instrument for glaucoma filtration surgery. The purpose of the present study was to evaluate the feasibility of minimally invasive laser sclerostomy by femtosecond laser photodisruption and seek the appropriate patterns of laser ablation and relevant laser parameters. A femtosecond laser (800 nm/50 fs/1 kHz), focused by a 0.1 numerical aperture (NA) objective lens, with different pulse energies and exposure times was applied to ablate hydrated rabbit sclera in vitro. The irradiated samples were examined by scanning electron microscopy (SEM). By moving a three-dimensional, computer-controlled translation stage to which the sample was attached, the femtosecond laser could produce three types of ablation patterns, including linear ablation, cylindrical aperture and rectangular cavity. With pulse energies ranging from 37.5 to 150 μJ, the linear lesions were consistently observed at the inner surface of sclera, whereas it failed to make any photodisruption if pulse energy was below the threshold value of 31.25 μJ, with the corresponding threshold intensity of 4.06×1014 W/cm2. The depths of the linear lesions increased linearly with both pulse energy (37.5–150 μJ) and exposure time (0.1–0.4 s). Histological examination showed the incisions produced by femtosecond laser photodisruption had precise geometry and the edges were sharp and smooth, with no evidence of collateral damage to the surrounding tissue. Our results predict the potential application of femtosecond laser pulses in minimally invasive laser sclerostomy for glaucoma treatment.  相似文献   

20.
We provide guidelines to femtosecond laser users to select ad hoc laser parameters, namely the fluence and pulse duration, in the context of the development of ablation processes at the surface of dielectrics using single femtosecond pulses. Our results and discussion are based on a comprehensive experimental and theoretical analysis of the energy deposition process at the surface of fused silica samples and of their postmortem ablation characteristics, in the range of intensities from 1013 to 1015 W/cm2. We show experimentally and numerically that self-induced plasma transient properties at the pulse timescale dramatically determine the efficiency of energy deposition and affect the resulting ablation morphology. In practice, we determine that the precise measurement of two characteristic fluence values, namely the laser-induced ablation threshold F th,LIAT and the fluence F opt for maximum ablation efficiency, are only required to qualify the outcomes of laser ablation at the surface of a dielectric in an extended range of applied fluence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号