首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A venturi scrubber is one of the most important devices for air pollution control. Although there are different models for predicting the pressure drop in venturi scrubbers, most of them have some defects and cannot predict the pressure drop correctly. In this study, for the first time, an Eulerian–Eulerian computational fluid dynamics (CFD) model is combined with a population balance equation to predict the pressure drop in venturi scrubbers. This simulation takes into account a multiple size group model for droplet dispersion and droplet size distribution, which is based on a population balance equation. Flow field has been calculated by solving the time averaged continuity and Navier–Stokes equations along with the standard kε turbulence model. The equations included drag, turbulent dispersion, and buoyancy forces. The calculated pressure drop with and without considering the population balance equation was compared with the experimental data to evaluate the accuracy of the CFD modeling. The size distribution of droplets in the venturi scrubber was studied at different points for different liquid to gas ratios and throat gas velocities. The results show that the maximum break-up of droplets happens at the liquid injection point. Finally, the effects of nozzle diameter and nozzle arrangement on pressure drop in venturi scrubbers were investigated.  相似文献   

2.
A droplet, a few hundreds of microns, of liquid crystalline hydroxypropylcellulose (HPC) in water is imbedded into a polydimethylsiloxane (PDMS) matrix and subjected to a shear flow. The droplet is deformed into a thread of high aspect ratio. The textures associated with the break-up of the thread once the flow is stopped are observed by optical microscopy. After stopping the flow a banded texture appears. The droplets resulting from the break-up have a bipolar texture with the two opposite poles being along the former thread direction.  相似文献   

3.
We present a microfluidic approach for the controlled encapsulation of individual gas bubbles in micrometer-diameter aqueous droplets with high gas volume fractions and demonstrate this approach to making a liquid shell, which serves as a template for the synthesis of hollow inorganic particles. In particular, we find that an increase in the viscosity of the aqueous phase facilitates the encapsulation of individual gas bubbles in an aqueous droplet and allows control of the thickness of a thin aqueous shell. Furthermore, because such droplets contain a finite amount of water, uncontrolled hydrolysis reactions between reactive inorganic precursors and bulk water can be avoided. We demonstrate this approach by introducing reactive inorganic precursors, such as silane and titanium butoxide, for sol-gel reactions downstream from the formation of the bubble in a droplet and consequently fabricate hollow particles of silica or titania in one continuous flow process. These approaches provide a route to controlling double-emulsion-type gas-liquid microstructures and offer a new fabrication method for thin-shell-covered microbubbles and hollow microparticles.  相似文献   

4.
流体在微流通道中形成剪切流场(低雷诺数).不同于宏观体系,由于剪切力和表面张力的竞争作用,产生的液滴在微尺度下的微流通道中形成特殊的排列现象---周期性类似“晶格”排列现象.设计了新型流动聚焦型微流控芯片,分析研究在微流体系中液滴周期性图案化排列和转变机理性,液滴排列模式受两方面因素影响:水油两相的流速比值和微通道尺寸.当微通道宽度为250或300 μm时,液滴形成单层分散,双层和单层挤压排列.当微通道宽度为350 μm 时,液滴会形成单层分散到三层排列到双层挤压最后到单层挤压排列.当出口通道宽度增加到400 μm时,甚至出现了液滴四层排列的现象.同时研究了各个液滴排列模式的“转变点”.  相似文献   

5.
Mary P  Chen A  Chen I  Abate AR  Weitz DA 《Lab on a chip》2011,11(12):2066-2070
Droplet-based microfluidics provides an excellent platform for high-throughput biological assays. Each droplet serves as a reaction vessel with a volume as small as a few picolitres. This is an important technology for a high variety of applications. However this technology is restricted to homogeneous assays as it is very difficult to wash reagents from the reaction vessel. To help overcome this limitation, we introduce a method to effectively dilute the content of a droplet while retaining the high throughput. We use electrocoalescence to merge the parent drop with a much larger drop containing only solvent, thereby increasing the volume of the drop by as much as a factor of 14. Three T-junctions then break the larger drop into eight smaller droplets. This dilution and break-up process can be repeated, thus leading to many drops comparable in size to the original one but with much lower concentration of reagents. The system is fully integrated in a PDMS device. To demonstrate its power, we perform a labelling reaction at the surface of the cells by coencapsulating yeast cells expressing S6 peptide tags with the enzyme SFP synthase and the fluorescent substrate CoA 488. After reaction, the droplets are diluted twice using the system and the intensity of their fluorescence is measured. This noise reduction method enables us to more easily distinguish the fluorescence at the surface of a single cell from the fluorescent background inside the droplet.  相似文献   

6.
We developed a microfluidic device to form monodisperse droplets with high productivity by anisotropic elongation of a thread flow, defined as a threadlike flow of a dispersed liquid phase in a flow of an immiscible, continuous liquid phase. The thread flow was anisotropically elongated in the depth direction in a straight microchannel with a step, where the microchannel depth changed. Consequently, the elongated thread flow was given capillary instability (Rayleigh-Plateau instability) and was continuously transformed into monodisperse droplets at the downstream area of the step in the microchannel. We examined the effects of the flow rates of the dispersed phase and the continuous phase on the droplet formation behavior, including the droplet diameter and droplet formation frequency. The droplet diameter increased as the fraction of the dispersed-phase flow rate relative to the total flow rate increased and was independent of the total flow rate. The droplet formation frequency proportionally increased with the total flow rate at a constant dispersed-phase flow rate fraction. These results are explained in terms of a mechanism similar to that of droplet formation from a cylindrical liquid thread flow by Rayleigh-Plateau instability. The microfluidic device described was capable of forming monodisperse droplets with a 160-microm average diameter and 3-microm standard deviation at a droplet formation frequency of 350 droplets per second from a single thread flow. The highest total flow rate achieved was 6 mL/h using the present device composed of a straight microchannel with a step. We also demonstrated parallel droplet formation by anisotropic elongation of multiple thread flows; the process was applied to form W/O and O/W droplets. The highly productive droplet formation process presented in this study is expected to be useful for future industrial applications.  相似文献   

7.
Passive microfluidic channel geometries for control of droplet fission, fusion and sorting are designed, fabricated, and tested. In droplet fission, the inlet width of the bifurcating junction is used to control the range of breakable droplet sizes and the relative resistances of the daughter channels were used to control the volume of the daughter droplets. Droplet fission is shown to produce concentration differences in the daughter droplets generated from a primary drop with an incompletely mixed chemical gradient, and for droplets in each of the bifurcated channels, droplets were found to be monodispersed with a less than 2% variation in size. Droplet fusion is demonstrated using a flow rectifying design that can fuse multiple droplets of same or different sizes generated at various frequencies. Droplet sorting is achieved using a bifurcating flow design that allows droplets to be separated base on their sizes by controlling the widths of the daughter channels. Using this sorting design, submicron satellite droplets are separated from the larger droplets.  相似文献   

8.
Membrane emulsification is a promising and relatively new technique for producing emulsions. The purpose of this study was to better understand the influence of interfacial tension on droplet formation during membrane emulsification. Droplet formation experiments were carried out with a microengineered membrane; the droplet diameter and droplet formation time were studied as a function of the surfactant concentration in the continuous phase. These experiments confirm that the interfacial tension influences the process of droplet formation; higher surfactant concentrations lead to smaller droplets and shorter droplet formation times (until 10 ms). From drop volume tensiometer experiments we can predict the interfacial tension during droplet formation. However, the strong influence of the rate of flow of the to-be-dispersed phase on the droplet size cannot be explained by the predicted values. This large influence of the oil rate of flow is clarified by the hypothesis that snap-off is rather slow in the studied regime of very fast droplet formation.  相似文献   

9.
Aeration of emulsions by whipping   总被引:9,自引:0,他引:9  
During aeration of food emulsions such as dairy cream and ice cream, small gas bubbles are introduced, which are often stabilized by a layer of adsorbed emulsion droplets. It is shown that the maximum achievable volume of gas bubbles that can be incorporated by whipping depends on the effectiveness of the introduction of gas during the first stage of whipping and is furthermore limited by packing constraints. The main factors relevant for the latter limitation are the thickness of the coating of emulsion droplets at the bubble surface, the ratio between the droplet and bubble radii, and the fat content of the emulsion. It is hypothesized that, during whipping, a dynamic process of bubble break-up and coalescence adjusts the average bubble size and the volume of gas incorporated in the foam to the constraint of close packing of the bubbles. The consequences of this mechanism for whipping of emulsions are discussed.  相似文献   

10.
Song K  Zhang L  Hu G 《Electrophoresis》2012,33(3):411-418
The problem of controlling the droplet motion in multiphase flows on the microscale has gained increasing attention because the droplet-based microfluidic devices provide great potentials for chemical and biological applications. It is critical to understand the relevant physics on droplet hydrodynamics and thus control the generation, motion, splitting, and coalescence of droplets in complex microfluidic networks. Numerical simulations using the volume of fluid algorithm are conducted to investigate the time-dependent dynamics of droplets in gas-liquid multiphase devices. An analytical model based on the electronic-hydraulic analogy is developed to describe the hydrodynamic behavior of the droplets in interconnected microfluidic ladder devices. It is found that the pressure drop caused by the droplets plays a critical role in the droplet synchronization. A fitted formula for pressure drops in the presence of surfactant is achieved by using numerical simulations. Both the numerical and the theoretical results agree well with the corresponding experimental results.  相似文献   

11.
Li ZG  Ando K  Yu JQ  Liu AQ  Zhang JB  Ohl CD 《Lab on a chip》2011,11(11):1879-1885
A method for on-demand droplet fusion in a microfluidic channel is presented using the flow created from a single explosively expanding cavitation bubble. We test the technique for water-in-oil droplets, which are produced using a T-junction design in a microfluidic chip. The cavitation bubble is created with a pulsed laser beam focused into one droplet. High-speed photography of the dynamics reveals that the droplet fusion can be induced within a few tens of microseconds and is caused by the rapid thinning of the continuous phase film separating the droplets. The cavitation bubble collapses and re-condenses into the droplet. Droplet fusion is demonstrated for static and moving droplets, and for droplets of equal and unequal sizes. Furthermore, we reveal the diffusion dominated mixing flow and the transport of a single encapsulated cell into a fused droplet. This laser-based droplet fusion technique may find applications in micro-droplet based chemical synthesis and bioassays.  相似文献   

12.
The ability of a liquid droplet to move on an incline has important ramifications in discrete volume fluidic devices. By taking advantage of the spontaneous and copious formation of visible air bubbles within water droplets on a polytetrafluoroethylene (PTFE) surface, we uncovered a direct correlation between their presence and the ability of droplets to slide down an incline. We forward two possible mechanisms to account for this behavior. The first is attributed to the air bubbles creating regions where additional solid-liquid-vapor phase interfaces are present; wherein due to the buoyancy force acting upwards, the orientation of the contact angles of each bubble (which should also be in hysteresis but in the opposite direction of the hysteresis at the droplet rim contact lines) dictate that the net force of the bubbles in the droplet act down an incline. We show here that this mechanism cannot fully account for the bubble enhanced sliding behavior. The second mechanism is based on the occurrence of the droplet front advancing first, causing the droplet to elongate and thus allowing the receding contact line to partially sweep inwards over the bubbles. This causes a series of point-wise disruptions on the contact line that permits the droplet to slide down more readily. The relatively short time of ~180s during which these micron sized bubbles decrease in size indicates a possibility of this mechanism contributing to a transient means to reduce the retention force of droplets that reside on hydrophobic surfaces.  相似文献   

13.
A challenging task in measuring droplet size is the ability to perform in-situ droplet size distribution analysis on multiphase fluids in their native states in the undisturbed environment. In this study, an inline two-dimensional low cost–high accuracy technique is presented for continuous measurement of spherical or non-spherical droplets in emulsions using image processing. The characteristic of the droplets is evaluated and the describe drop size distributions in different ranges is determined. This droplet size determination algorithm is based on both cellular neural networks and linear matrix inequality. Our main work focuses on the performance of the proposed methodology for exploring the dynamical evolution of such droplet size distributions by in-situ measurement. Moreover, the results were compared with those obtained using laser diffraction analyzer technique. It was proved that this method can efficiently characterize the quality of dispersed phase by determining droplet size distribution.  相似文献   

14.
We report a novel approach to continuous and scalable production of core-shell droplets and polymer capsules in microfluidic devices. The described method is also useful in the synthesis of polymer particles with nonspherical shapes. We used capillary instability-driven break-up of a liquid jet formed by two immiscible fluids. Precise control of emulsification of each liquid allowed for the production of highly monodisperse core-shell droplets with a predetermined diameter of cores and thickness of shells. We also achieved control over the number of cores per droplet and the location of cores in the droplet. We carried out fast throughput photopolymerization of the monomeric shells and obtained polymer particles with various shapes and morphologies, including spheres, truncated spheres and, hemispheres, and single and multicore capsules.  相似文献   

15.
The capability of continuously sampling the extracellular fluid opens up a wide range of applications of microdialysis in biological, pharmaceutical, and clinical studies. Existing microdialysis, however, faces challenges in sampling analytes with fast clearance and limited diffusivity because sampling resolution is limited by device size. Size reduction in probes and interconnected cannulae is a promising solution to improve temporal and spatial resolution. But the back pressure produced by resistance to laminar flows will be magnified in smaller channels, raising a concern as to whether it is feasible to operate continuous perfusion for miniaturized microdialysis. We demonstrate that a 10-fold smaller channel will exhibit 100-fold larger back pressure in response to the increase in the flow rate to maintain the relative recovery. In order to overcome the foreseen back pressure issue, this paper discusses a new concept using discrete droplets instead of continuous flows to operate dialysis in a miniaturized probe. This conceptual design is referred to as droplet-based digital microdialysis, in which droplets are produced, controlled and advanced within microchannels at a rate that in theory should allow for analytes to equilibrate with the extracellular fluid under no flow conditions. Expecting that a digital droplet design will entirely eliminate back pressure by introducing air between droplets, we numerically compare the equilibration kinematics of droplets to that of continuous flow. Results suggest equilibration of low molecular weight analytes between intermittently stationary droplets and the extracellular fluid in a few seconds. Considerations in design, prototyping, calibration and quantification, and the integration with other devices are suggested.  相似文献   

16.
After a brief introduction on the variables which describe the physico-chemical properties of a fluid surface, this paper compares, in a very simple way, the equilibrium constant of homogeneous and heterogeneous reactions taking place in spherical micro-objects (uncharged and charged droplets and bubbles) and in media bordered by a flat interface. This quantity is by definition the exponential of the dimensionless standard chemical affinity whose values (< or = 0, > or = 0) may indicate the direction and the importance of the reaction (strictly true when the mixing term of the affinity is zero). The classical thermodynamic approach combined with the Laplace equation shows that: (i) high surface tension and high curvature influence the equilibrium constant, this effect being, however, much more important for bubbles than for droplets; (ii) charges on droplets reduce this effect; (iii) the constant of reaction taking place in the vapour in contact with a charged droplet depends significantly on the electric field pressure; (iv) reactions in droplets dispersed in the liquid phase are discussed and, in particular, capillarity seems to play a negligible role on reactions in micro-emulsions; (v) the surface amount of a gas bubble component transferred in the continuous liquid can be related to capillary quantities; (vi) expanding (or shrinking) bubble induced by a chemical reaction is analysed by using an extended Laplace law which includes the volumetric flow rate; (vii) the Laplace law is discussed in the frame of the choice of the dividing surface. Numerous actual examples from the atmosphere, sonochemistry and metallurgy illustrate the theory proposed. One of the interest, among other points, is that small objects (specially bubbles) give the potentiality to obtain, for steady or (near) equilibrium states, large amount of components which would not be possible when dealing with large reservoirs.  相似文献   

17.
The pressure drop along rectangular microchannels containing bubbles   总被引:2,自引:0,他引:2  
This paper derives the difference in pressure between the beginning and the end of a rectangular microchannel through which a flowing liquid (water, with or without surfactant, and mixtures of water and glycerol) carries bubbles that contact all four walls of the channel. It uses an indirect method to derive the pressure in the channel. The pressure drop depends predominantly on the number of bubbles in the channel at both low and high concentrations of surfactant. At intermediate concentrations of surfactant, if the channel contains bubbles (of the same or different lengths), the total, aggregated length of the bubbles in the channel is the dominant contributor to the pressure drop. The difference between these two cases stems from increased flow of liquid through the "gutters"-the regions of the system bounded by the curved body of the bubble and the corners of the channel-in the presence of intermediate concentrations of surfactant. This paper presents a systematic and quantitative investigation of the influence of surfactants on the flow of fluids in microchannels containing bubbles. It derives the contributions to the overall pressure drop from three regions of the channel: (i) the slugs of liquid between the bubbles (and separated from the bubbles), in which liquid flows as though no bubbles were present; (ii) the gutters along the corners of the microchannels; and (iii) the curved caps at the ends of the bubble.  相似文献   

18.
Bardin D  Martz TD  Sheeran PS  Shih R  Dayton PA  Lee AP 《Lab on a chip》2011,11(23):3990-3998
In this study we report on a microfluidic device and droplet formation regime capable of generating clinical-scale quantities of droplet emulsions suitable in size and functionality for in vivo therapeutics. By increasing the capillary number-based on the flow rate of the continuous outer phase-in our flow-focusing device, we examine three modes of droplet breakup: geometry-controlled, dripping, and jetting. Operation of our device in the dripping regime results in the generation of highly monodisperse liquid perfluoropentane droplets in the appropriate 3-6 μm range at rates exceeding 10(5) droplets per second. Based on experimental results relating droplet diameter and the ratio of the continuous and dispersed phase flow rates, we derive a power series equation, valid in the dripping regime, to predict droplet size, D(d) approximately equal 27(Q(C)/Q(D))(-5/12). The volatile droplets in this study are stable for weeks at room temperature yet undergo rapid liquid-to-gas phase transition, and volume expansion, above a uniform thermal activation threshold. The opportunity exists to potentiate locoregional cancer therapies such as thermal ablation and percutaneous ethanol injection using thermal or acoustic vaporization of these monodisperse phase-change droplets to intentionally occlude the vessels of a cancer.  相似文献   

19.
Molla S  Eskin D  Mostowfi F 《Lab on a chip》2011,11(11):1968-1978
Pressure drop in a gas-liquid slug flow through a long microchannel of rectangular cross-section was investigated. Pressure measurements in a lengthy (~0.8 m) microchannel determined the pressure gradient to be constant in a flow where gas bubbles progressively expanded and the flow velocity increased due to a significant pressure drop. Most of the earlier studies of slug flow in microchannels considered systems where the expansion of the gas bubbles was negligible in the channel. In contrast, we investigated systems where the volume of the gas phase increased significantly due to a large pressure drop (up to 1811 kPa) along the channel. This expansion of the gas phase led to a significant increase in the void fraction, causing considerable flow acceleration. The pressure drop in the microchannel was studied for three gas-liquid systems; water-nitrogen, dodecane-nitrogen, and pentadecane-nitrogen. Inside the microchannel, local pressure was measured using a series of embedded membranes acting as pressure sensors. Our investigation of the pressure drop showed a linear trend over a wide range of void fractions and flow conditions in the two-phase flow. The lengths and the velocities of the liquid slugs and the gas bubbles were also studied along the microchannel by employing a video imaging technique. Furthermore, a model describing the gas-liquid slug flow in a long microchannel was developed to calculate the pressure drop under conditions similar to the experiments. An excellent agreement between the developed model and the experimental data was obtained.  相似文献   

20.
Monodisperse poly(dl-lactic acid) (PLA) particles of diameters between 11 and 121 μm were fabricated in flow focusing glass microcapillary devices by evaporation of dichloromethane (DCM) from emulsion droplets at room temperature. The dispersed phase was 5% (w/w) PLA in DCM containing 0.1-2 mM Nile Red and the continuous phase was 5% (w/w) poly(vinyl alcohol) in reverse osmosis water. Particle diameter was 2.7 times smaller than the diameter of the emulsion droplet template, indicating very low particle porosity. Monodisperse droplets have only been produced under dripping regime using a wide range of dispersed phase flow rates (0.002-7.2 cm(3)·h(-1)), continuous phase flow rates (0.3-30 cm(3)·h(-1)), and orifice diameters (50-237 μm). In the dripping regime, the ratio of droplet diameter to orifice diameter was inversely proportional to the 0.39 power of the ratio of the continuous phase flow rate to dispersed phase flow rate. Highly uniform droplets with a coefficient of variation (CV) below 2% and a ratio of the droplet diameter to orifice diameter of 0.5-1 were obtained at flow rate ratios of 4-25. Under jetting regime, polydisperse droplets (CV > 6%) were formed by detachment from relatively long jets (between 4 and 10 times longer than droplet diameter) and a ratio of the droplet size to orifice size of 2-5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号