首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary The paper is concerned with an analytical investigation of helical flow of a non-Newtonian fluid through an annulus with a rotating inner cylinder. The shear dependence of viscosity is described by a power law and the temperature dependence by an exponential function.Velocity and temperature profiles, energy input and shear along the stream lines, pressure drop, and torque are presented for the range of input parameters encountered in polymer extrusion.The results of the study can be applied to a mixing element in a screw extruder and for a device to control extrudate temperature and output.Nomenclature a thermal diffusivity [m2/s] - b temperature coefficient [K–1], see eq. [4] - c heat capacity [J/kg K] - h slot width [m] - I 1,I 2,I 3 invariants of the rate of deformation tensor, see eq. [5] - k thermal conductivity [J/m s K] - l, L = 1/h length of the slot - l T ,l K thermal and kinematic entrance length - m power law exponent, see eq. [3] - M torque [m N] - p pressure [N/m2] - P dimensionless pressure gradient, see eq. [24] - P R,P RZ dimensionless components of the shear stress tensor, see eq. [25] and eq. [26] - r, R = r/r wa radial coordinate - r wa, rwi outer and inner radius of annulus [m] - t time [s]; dwell time in the annulus - T temperature [K] - v , vr, Vz velocity components [m/s] - v 0 angular velocity at inner wall [m/s] - average velocity inz-direction [m/s] - V , VR, VZ dimensionless velocity components,v /v0, vr/v0, vz/v0 - V z velocity ratio, helical parameter - Y coordinate inr-direction, see eq. [20] - z, Z = z/h Pe axial coordinate - deformation - rate of deformation tensor [s–1] - apparent viscosity [N s/m2], see eq. [3] - dimensionless temperature,b (T – T 0) - azimuth coordinate - ratio of radii,r wi/rwa - density [kg/m3] - , kl shear stress tensor [N/m2] - fluidity [m2w/Nw s], see eq. [4] - Gf Griffith number, see eq. [12] - Pe Péclet number, see eq. [13] - Re Reynolds number, - 0 initial state, reference state - equilibrium state - e entrance - wi, wa at surface of inner or outer wall - r, R, z, Z, coordinates - i, j radial and axial position of nodal point in the grid - k, l tensor components Presented at Euromech 37, Napoli 6. 20–23. 1972.With 15 figuresDedicated to Prof. Dr.-Ing. G. Schenkel on his 60th birthday  相似文献   

2.
In this paper we continue the geometrical studies of computer generated two-phase systems that were presented in Part IV. In order to reduce the computational time associated with the previous three-dimensional studies, the calculations presented in this work are restricted to two dimensions. This allows us to explore more thoroughly the influence of the size of the averaging volume and to learn something about the use of anon-representative region in the determination of averaged quantities.

Nomenclature

Roman Letters A interfacial area of the interface associated with the local closure problem, m2 - a i i=1, 2, gaussian probability distribution used to locate the position of particles - l unit tensor - characteristic length for the-phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1,2,3 lattice vectors, m - m convolution product weighting function - m V special convolution product weighting function associated with a unit cell - n i i=1, 2 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume,V, m3 - x position of the centroid of an averaging area, m - x 0 reference position of the centroid of an averaging area, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters V /V, volume average porosity - a i standard deviation ofa i - r standard deviation ofr - intrinsic phase average of   相似文献   

3.
Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic solid matrix. The analysis is restricted to steady forms of the momentum equations and small deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; however, the determination of the Darcy's law permeability tensor represents part of the closure problem in which the position of the fluid-solid interface must be determined.Roman Letters A interfacial area of the- interface contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A e area of entrances and exits for the-phase contained within the macroscopic system, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - E Young's modulus for the-phase, N/m2 - e i unit base vectors (i = 1, 2, 3) - g gravity vector, m2/s - H height of elastic, porous bed, m - k unit base vector (=e 3) - characteristic length scale for the-phase, m - L characteristic length scale for volume-averaged quantities, m - n unit normal vector pointing from the-phase toward the-phase (n = -n ) - p pressure in the-phase, N/m2 - P p g·r, N/m2 - r 0 radius of the averaging volume, m - r position vector, m - t time, s - T total stress tensor in the-phase, N/m2 - T 0 hydrostatic stress tensor for the-phase, N/m2 - u displacement vector for the-phase, m - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 - v velocity vector for the-phase, m/s Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - shear coefficient of viscosity for the-phase, Nt/m2 - first Lamé coefficient for the-phase, N/m2 - second Lamé coefficient for the-phase, N/m2 - bulk coefficient of viscosity for the-phase, Nt/m2 - T T 0 , a deviatoric stress tensor for the-phase, N/m2  相似文献   

4.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

5.
Summary Transient stresses including normal stresses, which are developed in a polymer melt by a suddenly imposed constant rate of shear, are investigated by mechanical measurement and, indirectly, with the aid of the flow birefringence technique. For the latter purpose use is made of the so-called stress-optical law, which is carefully checked.It appears that the essentially linear model of the rubberlike liquid, as proposed byLodge, is capable of describing the behaviour of polymer melts rather well, if the applied total shear does not exceed unity. In order to describe also steady state values of the stresses successfully, one should extend measurements to extremely low shear rates.These statements are verified with the aid of a method which was originally designed bySchwarzl andStruik for the practical calculation of interrelations between linear viscoelastic functions. In the present paper dynamic shear moduli are used as reference functions.
Zusammenfassung Mit der Zeit anwachsende Spannungen, darunter auch Normalspannungen, wie sie sich nach dem plötzlichen Anlegen einer konstanten Schergeschwindigkeit in einer Polymerschmelze entwickeln, werden mit Hilfe mechanischer Messungen und indirekt mit Hilfe der Strömungsdoppelbrechung untersucht. Für den letzteren Zweck wird das sogenannte spannungsoptische Gesetz herangezogen, dessen Gültigkeit sorgfältig überprüft wird.Es ergibt sich, daß das im Wesen lineare Modell der gummiartigen Flüssigkeit, wie es vonLodge vorgeschlagen wurde, sich recht gut zur Beschreibung des Verhaltens von Polymerschmelzen eignet, solange der im ganzen angelegte Schub den Wert Eins nicht überschreitet. Um auch stationäre Werte der Spannungen in die Beschreibung erfolgreich einzubeziehen, sollte man die Messungen bis zu extrem niedrigen Schergeschwindigkeiten ausdehnen.Die gemachten Feststellungen werden mit Hilfe einer Methode verifiziert, die vonSchwarzl undStruik ursprünglich für die praktische Berechnung von Beziehungen zwischen Zustandsfunktionen entwickelt wurde, die dem linear viskoelastischen Verhalten entsprechen. In der vorliegenden Veröffentlichung dienen die dynamischen Schubmoduln als Bezugsfunktionen.

a T shift factor - B ij Finger deformation tensor - C stress-optical coefficient, (m2/N) - f (p jl ) undetermined scalar function - G shear modulus, (N/m2) - G(t) time dependent shear modulus, (N/m2) - G() shear storage modulus, (N/m2) - G() shear loss modulus, (N/m2) - G r reduced shear storage modulus, (N/m2) - G r reduced shear loss modulus, (N/m2) - H() shear relaxation time spectrum, (N/m2) - k Boltzmann constant, (Nm/°K) - n ik refractive index tensor - p undetermined hydrostatic pressure, (N/m2) - p ij ,p ik stress tensor, (N/m2) - p 21 shear stress, (N/m2) - p 11p 22 first normal stress difference, (N/m2) - p 22p 33 second normal stress difference, (N/m2) - q shear rate, (s–1) - t, t time, (s) - T absolute temperature, (°K) - T 0 reference temperature, (°K) - x the ratiot/ - x position vector of a material point after deformation, (m) - x position vector of a material point before deformation, (m) - 0, 1 constants in eq. [37] - 0, 1 constants in eq. [37] - shear deformation - (t, t) time dependent shear deformation - ij unity tensor - n flow birefringence in the 1–2 plane - (q) non-Newtonian shear viscosity, (N s/m2) - * () complex dynamic viscosity, (N s/m2) - | * ()| absolute value of complex dynamic viscosity, (N s/m2) - () real part of complex dynamic viscosity, (N s/m2) - () imaginary part of complex dynamic viscosity, (N s/m2) - (t — t) memory function, (N/m2 · s) - v number of effective chains per unit of volume, (m–3) - temperature dependent density, (kg/m3) - 0 density at reference temperatureT 0, (kg/m3) - relaxation time, (s) - integration variable, (s) - (x) approximate intensity function - 1 (x) error function - extinction angle - m orientation angle of the stress ellipsoid - circular frequency, (s–1) - 1 direction of flow - 2 direction of the velocity gradient - 3 indifferent direction - t time dependence The present investigation has been carried out under the auspices of the Netherlands Organization for the Advancement of Pure Research (Z. W. O.).North Atlantic Treaty Organization Science Post Doctoral Fellow.Research Fellow, Delft University of Technology.With 11 figures and 2 tables  相似文献   

6.
In the method of volume averaging, the difference between ordered and disordered porous media appears at two distinct points in the analysis, i.e. in the process of spatial smoothing and in the closure problem. In theclosure problem, the use of spatially periodic boundary conditions isconsistent with ordered porous media and the fields under consideration when the length-scale constraint,r 0L is satisfied. For disordered porous media, spatially periodic boundary conditions are an approximation in need of further study.In theprocess of spatial smoothing, average quantities must be removed from area and volume integrals in order to extractlocal transport equations fromnonlocal equations. This leads to a series of geometrical integrals that need to be evaluated. In Part II we indicated that these integrals were constants for ordered porous media provided that the weighting function used in the averaging process contained thecellular average. We also indicated that these integrals were constrained by certain order of magnitude estimates for disordered porous media. In this paper we verify these characteristics of the geometrical integrals, and we examine their values for pseudo-periodic and uniformly random systems through the use of computer generated porous media.

Nomenclature

Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - a i i=1, 2, 3 gaussian probability distribution used to locate the position of particles - I unit tensor - L general characteristic length for volume averaged quantities, m - L characteristic length for , m - L characteristic length for , m - characteristic length for the -phase particles, m - 0 reference characteristic length for the-phase particles, m - characteristic length for the-phase, m - i i=1, 2, 3 lattice vectors, m - m convolution product weighting function - m v special convolution product weighting function associated with the traditional volume average - n i i=1, 2, 3 integers used to locate the position of particles - n unit normal vector pointing from the-phase toward the-phase - n e outwardly directed unit normal vector at the entrances and exits of the-phase - r p position vector locating the centroid of a particle, m - r gaussian probability distribution used to determine the size of a particle, m - r 0 characteristic length of an averaging region, m - r position vector, m - r m support of the weighting functionm, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume,, m3 - x positional vector locating the centroid of an averaging volume, m - x 0 reference position vector associated with the centroid of an averaging volume, m - y position vector locating points relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - /L, small parameter in the method of spatial homogenization - standard deviation ofa i - r standard deviation ofr - r intrinsic phase average of   相似文献   

7.
Stokes flow through a rigid porous medium is analyzed in terms of the method of volume averaging. The traditional averaging procedure leads to an equation of motion and a continuity equation expressed in terms of the volume-averaged pressure and velocity. The equation of motion contains integrals involving spatial deviations of the pressure and velocity, the Brinkman correction, and other lower-order terms. The analysis clearly indicates why the Brinkman correction should not be used to accommodate ano slip condition at an interface between a porous medium and a bounding solid surface.The presence of spatial deviations of the pressure and velocity in the volume-averaged equations of motion gives rise to aclosure problem, and representations for the spatial deviations are derived that lead to Darcy's law. The theoretical development is not restricted to either homogeneous or spatially periodic porous media; however, the problem ofabrupt changes in the structure of a porous medium is not considered.Roman Letters A interfacial area of the - interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the - interface contained within the averaging volume, m2 - A * interfacial area of the - interface contained within a unit cell, m2 - Ae area of entrances and exits for the -phase contained within a unit cell, m2 - B second order tensor used to represent the velocity deviation (see Equation (3.30)) - b vector used to represent the pressure deviation (see Equation (3.31)), m–1 - d distance between two points at which the pressure is measured, m - g gravity vector, m/s2 - K Darcy's law permeability tensor, m2 - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the -phase (see Figure 2), m - characteristic length scale for the -phase (see Figure 2), m - n unit normal vector pointing from the -phase toward the -phase (n =–n ) - n e unit normal vector for the entrances and exits of the -phase contained within a unit cell - p pressure in the -phase, N/m2 - p intrinsic phase average pressure for the -phase, N/m2 - p p , spatial deviation of the pressure in the -phase, N/m2 - r 0 radius of the averaging volume and radius of a capillary tube, m - v velocity vector for the -phase, m/s - v phase average velocity vector for the -phase, m/s - v intrinsic phase average velocity vector for the -phase, m/s - v v , spatial deviation of the velocity vector for the -phase, m/s - V averaging volume, m3 - V volume of the -phase contained within the averaging volume, m3 Greek Letters V/V, volume fraction of the -phase - mass density of the -phase, kg/m3 - viscosity of the -phase, Nt/m2 - arbitrary function used in the representation of the velocity deviation (see Equations (3.11) and (B1)), m/s - arbitrary function used in the representation of the pressure deviation (see Equations (3.12) and (B2)), s–1  相似文献   

8.
Development characteristics of dilute cationic surfactant solution flow have been studied through the measurements of the time characteristics of surfactant solution by birefringence experiments and of the streamwise mean velocity profiles of surfactant solution duct flow by a laser Doppler velocimetry system. For both experiments, the concentration of cationic surfactant (oleylbishydroxymethylethylammonium chloride: Ethoquad O/12) was kept constant at 1000 ppm and the molar ratio of the counter ion of sodium salicylate to the surfactants was at 1.5. From the birefringence experiments, dilute surfactant solution shows very long retardation time corresponding to micellar shear induced structure formation. This causes very slow flow development of surfactant solution in a duct. Even at the end of the test section with the distance of 112 times of hydraulic diameter form the inlet, the flow is not fully developed but still has the developing boundary layer characteristics on the duct wall. From the time characteristics and the boundary layer development, it is concluded that the entry length of 1000 to 2000 times hydraulic diameter is required for fully developed surfactant solution flow.List of abbreviations and symbols A1, A2 Coefficients for time constant fitting [-] - B Breadth of the test duct [m] - C1, C2 Coefficients for time constant fitting [-] - D Pipe diameter [m] - DH Hydraulic diameter [m] - g Impulse response function [Pa] - H Width of the test duct [m] - n Index of Bird-Carreau model [-] - Re Reynolds number (=UmDH/) - ReD Pipe Reynolds number (=UmD/) - Rex Streamwise distance Reynolds number (=U0x/) - T Absolute temperature [K] - t Time [s] - ta Retardation time [s] - tb Build-up time [s] - tx Relaxation time [s] - tx1, tx2 Relaxation time for double time constant fitting [s] - t Time constant in Bird-Carreau model [s] - U Time mean velocity [m/s] - Um Bulk mean velocity [m/s] - Umax Maximum velocity in a pipe [m/s] - U0 Main flow velocity [m/s] - u Friction velocity [m/s] - x, y Coordinates [m] - Shear rate [s–1] - Mean shear rate [s–1] - n Birefringence [-] - 99% boundary layer thickness [m] - Solution viscosity [Pa·s] - P, S Surfactant and solvent viscosity [Pa·s] - 0, Zero and infinite viscosity of Bird-Carreau model [Pa·s] - Characteristic time in Maxwell model [s] - Water kinematic viscosity [m2/s] - Density [kg/m3] - Solution shear stress [Pa] - P, S Surfactant and solvent shear stress [Pa] - Time in convolution [s]  相似文献   

9.
This paper studies similarity solutions for pulsatile flow in a tube with wall injection and suction. The Navier-Stokes equations are reduced to a system of three ordinary differential equations. Two of the equations represent the effects of suction and injection on the steady flow while the third represents the effects of suction and injection on pulsatile flow. Since the equations for steady flow have been studied previously, the analysis centers on the third equation. This equation is solved numerically and by the method of matched asymptotic expansions. The exact numerical solutions compare well with the asymptotic solutions.The effects of suction and injection on pulsatile flow are the following: a) Small values of suction can cause a resonance-like effect for low frequency pulsatile flow. b) The annular effect still occurs but for large injection or suction the frequency at which this effect becomes dominant depends on the cross-flow Reynolds number. c) The maximum shear stress at the wall is decreased by injection, but may be increased or decreased by suction.Nomenclature a radius of the tube - a 0 2 i 2 - A0, B0, C0, D0, E0 constant coefficients appearing in the expression for pressure - b a non-dimensionalized length - b 0 2 i 2 2 - b k complex coefficients of a power series - B - C 1, C 2, D complex constants - d - D 1,2 - f() F(a 1/2)/aV - f 0,f 1,... functions of order one used in asymptotic expansions of f() - F(r) rv r - g() - G(r) a steady component of velocity in axial direction - h() 4/C0 a 2 H(a 1/2) - h 0,h 1,h 2,...;l 0,l 1,l 2,... functions of order one used in asymptotic expansions for h() in outer regions - H(r) complex valued function giving unsteady component of velocity - H 0, H 1, H 2, ... K 0, K 1, K 2, ...; L 0, L 1, L 2, ... functions of order one used in asymptotic expansions for h() in inner regions - i - J 0, J 1, Y 0, Y 1 Bessel functions of first and second kind - k - K Rk/2b 2 - O order symbol - p pressure - p 1(z, t) arbitrary function related to pressure - r radial coordinate - r 0 (1+16 4 4)1/4 - R Va/, the crossflow Reynolds number - t time - u() G(r)/V - v r radial velocity - v z axial velocity - V constant velocity at which fluid is injected or extracted - z axial coordinate - 2 a 2/4 - 4.196 - small parameter; =–2/R (Sect. 4); =–R/2 (Sect. 5); =2/R(Sect. 6) - r 2/a 2 - * 0.262 - Arctan (4 2 2) - , inner variables - kinematic viscosity - b - * zero of g() - density - (r, t) arbitrary function related to axial velocity - frequency  相似文献   

10.
Zusammenfassung Stoffübertragung für das System Naphthalin/Luft und Wärmeübertragung an Luft werden an der Platte mit laminarer und turbulenter Grenzschicht, in einem Rechteckkanal im Bereich des thermischen Analufs bei hydraulisch ausgebildeter turbulenter Strömung und am Kreisrohr bzw. Ringspalt bei vollausgebildeter Strömung gemessen. Die bekannten Gesetze bei Wärmeübertragung für Platte, Kreisrohr und Ringspalt in der Schreibweise für Stoffübertragung werden bestätigt. Die Gleichung vonElser für den thermischen Analufvorgang wird den Versuchsergebnissen angepaßt. Der Exponent der Prandtl- bzw. Schmidt-Zahl nimmt im Bereich 0,7<(Pr;Sc)<2,5 je nach Strömungsform Werte zwischen 0,33 und 0,67 an.
Mass transfer for the system naphthalin/air and heat transfer with air were measured for the following geometries: a plate with laminar and turbulent boundary-layer, a rectangular channel with fully developed turbulent velocity distribution in the thermal entrance region, a pipe of circular cross-section, an annular both in fully developed turbulent flow. For the plate, pipe and annular, the results of the two measuring methods agree very well and confirm the well known laws of heat transfer.Elser equation for the thermal entrance region is adapted to the results. The exponent of the Prandtl and Schmidt numbers varies in the range of 0,7<(Pr;Sc)<2,5 between the values 0,33 and 0,67 depending on the state of flow.

Bezeichnungen A empirische Zahlenkonstante - B empirische Zahlenkonstante - A Austauschgröße für Impuls [kg/ms] - A q Austauschgröße für Wärme [kg/ms] - A S Austauschgröße für Stoff [kg/ms] - B Plattenbreite [m] - C f Widerstandsbeiwert - D Diffusionskoeffizient [m2/s] - F freier Strömungsquerschnitt [m2] - K empirische Zahlenkonstante - K h Korrekturfaktor für Stefanstrom - L Plattenlänge [m] - M relative Molekülmasse [g/mol] - P Gesamtdruck [N/m2] - R Gaskonstante [Nm/kg grd] - S Oberfläche [m2] - T absolute Temperatur [°K] - U benetzter Umfang [m] - W Strömungswiderstand [N] - a Temperaturleitfähigkeit [m2/s] Exponent - b Exponent - c p spezifische Wärme [J/kg grd] - d Rohrdurchmesser [m] - hydraulischer Durchmesser [m] - l charakteristische Bezugslänge [m] - Massenstromdichte [kg/m2s] - m Exponent - n Exponent - p Partial- bzw. Dampfdruck [N/m2] - q Wärmestromdichte [W/m2] - t Zeit [s] - u Exponent - mittlere Strömungsgeschwindigkeit [m/s] - y laufende Koordinate [m] - y* mittlere Lauflänge der Grenzschicht [m] - mittlere Wärmeübergangszahl [W/m2grd] - örtliche Wärmeübergangszahl [W/m2grd] - mittlere Stoffübergangszahl [m/s] - örtliche Stoffübergangszahl [m/s] - Temperatur [°C] - Wärmeleitfähigkeit [W/m grd] - kinematische Zähigkeit [m2/s] - Dichte [kg/m3] - Druckverlustbeiwert - P Druckverlust [N/m2] - G Gewichtsverlust [kg] Dimensionslose Kenngrößen Pr=/a Prandtl-Zahl - Sc=/D Schmidt-Zahl - Le=a/D Lewis-Zahl - Pr t=A /A q turbulente Prandtl-Zahl - Sc t=A /A S turbulente Schmidt-Zahl - Re=ie225-8 ·l/ Reynolds-Zahl - Nu= ·l/ Nusselt-Zahl - Sh l= · l/D Sherwood-Zahl - St=Nu/Re Pr Stanton-Zahl - St=Sh/ReSc Stanton-Zahl für Stoffübertragung - j W=St Pr 1–n Wärmeübertragungskoeffizient - j S=St Sc 1–n Stoffübertragungskoeffizient - Tu % Turbulenzgrad Indizes A Stoff eines Zweistoffsystems - L Luft, Plattenlänge - M Mischung, bezogen auf den Massenstrom - N Naphthalin - S Stoffübertragung - W Wand; Wärmeübertragung - a, i außen, innen - 0 Bezugszustand  相似文献   

11.
In natural convection heat transfer through a thin horizontal layer of carbon dioxide, maxima in the equivalent thermal conductivities are obtained in the vicinity of the respective pseudocritical temperatures at pressures of 75.8, 89.6 and 103.4 bar. The maxima are the more pronounced, the closer the critical point is approached.Comparison of experimental results with Nusselt equations shows good agreement except for the immediate vicinity of the pseudocritical temperature.In visual observations a distinct change in flow structure appears in the immediate vicinity of the pseudocritical temperature. A steady state polygon pattern and a boiling-like action could not be observed in this geometry.
Zusammenfassung Beim Wärmetransport durch freie Konvektion in einer dünnen waagerechten Schicht von Kohlendioxid ergaben sich Maxima der scheinbaren Wärmeleitfähigkeit in der Nähe der pseudokritischen Temperaturen bei Drükken von 75,8, 89,6 und 103,4 bar. Die Maxima sind um so ausgeprägter, je mehr man sich dem kritischen Punkt nähert.Ein Vergleich der Versuchsergebnisse mit Nusseltbeziehungen ergibt gute Übereinstimmung außer in unmittelbarer Umgebung der pseudokritischen Temperatur. Direkte Beobachtungen der Konvektionsmuster zeigen in unmittelbarer Umgebung der pseudokritischen Temperatur eine deutliche Strukturänderung. Ein stationäres Zellmuster und siedeähnliche Vorgänge konnten in dieser Anordnung nicht beobachtet werden.

Nomenclature A area of the heating or cooling plate - C constant in the correlation - g acceleration of gravity - h heat transfer coefficient - k thermal conductivity of fluid in the gap - k e equivalent thermal conductivity - m, n exponents of dimensionless numbers - q heat flux - T C,PC absolute temperature; critical C, pseudocritical PC - Gr Grashof numberg ( h c) 3/ 2 - Nu Nusselt numberh/k - Pr Prandtl number/ - thermal diffusivity - coefficient of volume expansion - width of gap - c,h temperature of cooling (c)-, heating (h)-plate - m arithmetic mean temperature ( c+ h)/2 - kinematic viscosity - c,h fluid density at the temperature of the cooling (c)- or heating (h)-plate - heat flow rate through the gap  相似文献   

12.
The molecular theory of Doi has been used as a framework to characterize the rheological behavior of polymeric liquid crystals at the low deformation rates for which it was derived, and an appropriate extension for high deformation rates is presented. The essential physics behind the Doi formulation has, however, been retained in its entirety. The resulting four-parameter equation enables prediction of the shearing behavior at low and high deformation rates, of the stress in extensional flows, of the isotropic-anisotropic phase transition and of the molecular orientation. Extensional data over nearly three decades of elongation rate (10–2–101) and shearing data over six decades of shear rate (10–2–104) have been correlated using this analysis. Experimental data are presented for both homogeneous and inhomogeneous shearing stress fields. For the latter, a 20-fold range of capillary tube diameters has been employed and no effects of system geometry or the inhomogeneity of the flow-field are observed. Such an independence of the rheological properties from these effects does not occur for low molecular weight liquid crystals and this is, perhaps, the first time this has been reported for polymeric lyotropic liquid crystals; the physical basis for this major difference is discussed briefly. A Semi-empirical constant in eq. (18), N/m2 - c rod concentration, rods/m3 - c * critical rod concentration at which the isotropic phase becomes unstable, rods/m3 - C interaction potential in the Doi theory defined in eq. (3) - d rod diameter, m - D semi-empirical constant in eq. (19), s–1 - D r lumped rotational diffusivity defined in eq. (4), s–1 - rotational diffusivity of rods in a concentrated (liquid crystalline) system, s–1 - D ro rotational diffusivity of a dilute solution of rods, s–1 - f distribution function defining rod orientation - F tensorial term in the Doi theory defined in eq. (7) (or eq. (19)), s–1 - G tensorial term in the Doi theory defined in eq. (8) - K B Boltzmann constant, 1.38 × 10–23 J/K-molecule - L rod length, m - S scalar order parameter - S tensor order parameter defined in eq. (5) - t time, s - T absolute temperature, K - u unit vector describing the orientation of an individual rod - rate of change ofu due to macroscopic flow, s–1 - v fluid velocity vector, m/s - v velocity gradient tensor defined in eq. (9), s–1 - V mean field (aligning) potential defined in eq. (2) - x coordinate direction, m - Kronecker delta (= 0 if = 1 if = ) - r ratio of viscosity of suspension to that of the solvent at the same shear stress - s solvent viscosity, Pa · s - * viscosity at the critical concentrationc *, Pa · s - v 1, v2 numerical factors in eqs. (3) and (4), respectively - deviatoric stress tensor, N/m2 - volume fraction of rods - 0 constant in eq. (16) - * volume fraction of rods at the critical concentrationc * - average over the distribution functionf(u, t) (= d 2u f(u, t)) - gradient operator - d 2u integral over the surface of the sphere (|u| = 1)  相似文献   

13.
Zusammenfassung Es werden Geschwindigkeitsverteilungen und Filmdickenabnahmen von nichtisothermen NEWTONschen und nicht-NEWTONschen (Potenzansatz) Rieselfilmen mit temperaturanhÄngiger ViskositÄt berechnet, wobei die Temperaturverteilung im Film als linear vorausgesetzt wird. An dicken Rieselfilmen mit Re=10–4... 10–2 sind Geschwindigkeitsprofile, Filmdicken und OberflÄchentemperaturen gemessen und daraus die thermische EinlauflÄnge bestimmt worden. Ausgehend von der Penetrationstheorie für eine endlich dicke Platte kann man für diese EinlauflÄnge eine Approximationsformel erhalten, die für Strömungen mit Re < 1000 verwendet werden kann.
Non-isothermal filmflow of a highly viscous liquid, the viscosity strongly depending on temperature
Velocity distributions and film thicknesses of nonisothermal NEWTONIAN and non-NEWTONIAN (power-law) falling films are computed assuming that the temperature across the film varies linearly. Experimental studies on thick falling films of Re=10–4...10–2 had been carried out to measure velocities, film thickness and surface temperature and to calculate the thermal entrance length. One can get for this entrance length a approximation formula which is valid for flows with RePr <1000 by applying the results for the thermal penetration into a material finite plate.

Bezeichnungen B dimensionsloser Temperaturkoeffizient - ¯B [K] Temperaturkoeffizient (ln)/(1/T) - cp [J/kgK] spezif. WÄrme bei konst. Druck - Fo FOURIER-Zahl - g [m/s2] Erdbeschleunigung - H dimensionslose Filmdicke - h [m] Filmdicke - m [Pas2–n] ViskositÄtskoeffizient im Potenzansatz von OSTWALD-DE WAELE - Nu NUSSELT-Zahl - n Flüssigkeitsexponent im Potenzansatz von OSTWALD-DE WAELE - Pr PRANDTL-Zahl (Gl.3.5) - q [W/m2] WÄrmestromdichte - Re REYNOLDS-Zahl (Gl.3.4) - T [K] Temperatur - t [s] Zeit - U dimensionslose Geschwindigkeit (X-Komponente) - u [m/s] Geschwindigkeitskomponente in x-Richtung - X dimensionslose Koordinate (X=x/h0) - x [m] LÄnge, Koordinate - Y dimensionslose Koordinate (Y=y/h0) - y [m] Höhe, Koordinate - [W/m2K] WÄrmeübergangskoeffizient - Plattenneigungswinkel gegen Horizontale - [s–1] Schergeschwindigkeit - dimensionslose Temperatur (Gl.3.3) - [m2/s] TemperaturleitfÄhigkeit (Gl.3.3) - [W/mK] WÄrmeleitfÄhigkeit - [Pas] ViskositÄt - [kg/m3] spezif. Dichte - [Pa] Schubspannung Indizes a scheinbar (apparent) - 0 bei x=0, auch: isotherm - P auf die Penetrationszeit bezogen - s an der OberflÄche - T bei linearer Temperaturdifferenz T - w an der Wand - 99 auf =0,99 bezogen - gemittelt, Mittelwert - thermisch ausgebildet, bei x - proportional - ¯t ungefÄhr - kleiner oder gleich ungefÄhr  相似文献   

14.
In this paper, the derivation of macroscopic transport equations for this cases of simultaneous heat and water, chemical and water or electrical and water fluxes in porous media is presented. Based on themicro-macro passage using the method of homogenization of periodic structures, it is shown that the resulting macroscopic equations reveal zero-valued cross-coupling effects for the case of heat and water transport as well as chemical and water transport. In the case of electrical and water transport, a nonsymmetrical coupling was found.Notations b mobility - c concentration of a chemical - D rate of deformation tensor - D molecular diffusion coefficient - D ij eff macroscopic (or effective) diffusion tensor - electric field - E 0 initial electric field - k ij molecular tensor - j, j *, current densities - K ij macroscopic permeability tensor - l characteristic length of the ERV or the periodic cell - L characteristic macroscopic length - L ijkl coupled flows coefficients - n i unit outward vector normal to - p pressure - q t ,q t + , heat fluxes - q c ,q c + , chemical fluxes - s specific entropy or the entropy density - S entropy per unit volume - t time variable - t ij local tensor - T absolute temperature - v i velocity - V 0 initial electric potential - V electric potential - x macroscopic (or slow) space variable - y microscopic (or fast) space variable - i local vectorial field - i local vectorial field - electric charge density on the solid surface - , bulk and shear viscosities of the fluid - ij local tensor - ij local tensor - i local vector - ij molecular conductivity tensor - ij eff effective conductivity tensor - homogenization parameter - fluid density - 0 ion-conductivity of fluid - ij dielectric tensor - i 1 , i 2 , i 3 local vectors - 4 local scalar - S solid volume in the periodic cell - L volume of pores in the periodic cell - boundary between S and L - s rate of entropy production per unit volume - total volume of the periodic cell - l volume of pores in the cell On leave from the Politechnika Gdanska; ul. Majakowskiego 11/12, 80-952, Gdask, Poland.  相似文献   

15.
Nonstationary vibration of a flexible rotating shaft with nonlinear spring characteristics during acceleration through a critical speed of a summed-and-differential harmonic oscillation was investigated. In numerical simulations, we investigated the influence of the angular acceleration , the initial angular position of the unbalance n and the initial rotating speed on the maximum amplitude. We also performed experiments with various angular accelerations. The following results were obtained: (1) the maximum amplitude depends not only on but also on n and : (2) when the initial angular position n changes. the maximum amplitude varies between two values. The upper and lower bounds of the maximum amplitude do not change monotonously for the angular acceleration: (3) In order to always pass the critical speed with finite amplitude during acceleration. the value of must exceed a certain critical value.Nomenclature O-xyz rectangular coordinate system - , 1, 1 inclination angle of rotor and its projections to thexy- andyz-planes - I r polar moment of inertia of rotor - I diametral moment of inertia of rotor - i r ratio ofI r toI - dynamic unbalance of rotor - directional angle of fromx-axis - c damping coefficient - spring constant of shaft - N nt ,N nt nonlinear terms in restoring forees in 1 and 1 directions - 4 representative angle - a small quantity - V. V u .V N potential energy and its components corresponding to linear and nonlinear terms in the restoring forees - directional angle - n coefficients of asymmetrical nonlinear terms - n coefficients of symmetrical nonlinear terms - coefficients of asymmetrical nonlinear terms experessed in polar coordinates - coefficients of symmetrical nonlinear terms expressed in polar coordinates - rotating speed of shaft - t time - n initial angular position of att=0 - p natural frequency - p 1.p t natural frequencies of forward and backward precessions - , 1, 1 total phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - , 1, 1 phases of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - P, R t ,R b amplitudes of harmonic, forward precession and backward precession components in summed-and-differential harmonic oscillation - difference between phases ( = fu) - acceleration of rotor - initial rotating speed - t t ,r b amplitudes of nonstationary oscillation during acceleration - (r t )max, (r b )max maximum amplitudes of nonstationary oscillation during acceleration - (r 1 1 )max, (r b 1 )max maximum value of angular acceleration of non-passable case - 0 critical value over which the rotor can always pass the critical speed - p 1,p 2,p 3,p 4 natural frequencies of experimental apparatus  相似文献   

16.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

17.
The two-dimensional stationary turbulent buoyant flow and heat transfer in a cavity at high Rayleigh numbers was computed numerically. The k– turbulence model was used. The time-averaged equations for momentum, energy and continuity, which are coupled to the turbulence equations, were solved using a finite difference formulation. In order to validate the computer code, a comparison exercise was carried out. The test results are in good agreement with the internationally accepted benchmark solution. Grid-refinement shows the necessity of a very fine grid at high Rayleigh numbers with especially small grid-distances in the near-wall region. The computed boundary layer velocity profiles are in excellent agreement with available experimental data. The local heat transfer in the turbulent part of the boundary layers is predicted 20% too high. Computations were carried out for the natural convective flow in a room induced by a hot radiator and a cold window. Various radiator configurations and types of thermal boundary conditions were applied including thermal radiation interaction between surfaces.Nomenclature a thermal diffusivity (m2/s) - C constant in t expression - D cavity dimensions (m) - g acceleration of gravity (m/s2) - G k production/destruction of k by buoyancy (kg/ms3) - h enthalpy (J/kg) - IX index of grid point - k turbulent kinetic energy (m2/s2) - m dimensionless stratification parameter - Nu overall Nusselt number - Nu y local Nusselt number - NX total number of grid points - p pressure (N/m2) - P k production of k by shear stress (kg/ms3) - Q heat flux through wall (W/m) - Ra overall Rayleigh number - Ra y local Rayleigh number - Re t turbulent Reynolds number - S source term in -equation (kg/ms4) - S source term for - T c, T h temperatures of cold and hot walls (K) - T s (y) stratification temperature on vertical mid-line (K) - T 0 mean cavity temperature (K) - u, v horizontal and vertical velocity components (m/s) - u 0 Brunt-Vaisälä velocity scale (m/s) - x, y horizontal and vertical coordinates (m) - non-linearity parameter for grid - coefficient of thermal expansion (l/K) - jet angle (°) - diffusivity for - S dissipation rate for turbulent kinetic energy (m2/s3) - variable to be solved - thermal conductivity (W/mK) - , t kinematic and eddy viscosities (m2/s) - stream function (kg/ms) - density (kg/m3) - k, , t constants in k model  相似文献   

18.
Summary The site model theory (SMT) is shown to lead to the same deformation behaviour as that displayed by the standard linear solid (SLS), group I, for all loading conditions. If a second deformation mechanism (inter-molecular slip) is introduced the result is the same as that obtained with the standard linear solid, group II, and models the behaviour of a polymer melt near to the solidification temperature.
Zusammenfassung Es wird gezeigt, daß ein einfaches Platzwechsel-Modell (site model theory) bei allen Belastungsbedingungen das gleiche Deformationsverhalten voraussagt wie der lineare Drei-Parameter-Festkörper (standard linear solid, group I). Wenn ein weiterer Deformationsmechanismus (zwischenmolekulare Gleitung) eingeführt wird, entspricht das Verhalten dagegen demjenigen einer linearen Drei-Parameter-Flüssigkeit (standard linear solid, group II), welche das Verhalten einer Polymerschmelze in der Nähe der Schmelztemperatur beschreibt.

a = 12 0 + 21 0 , see eq. [1] - b =N 1 0 12 0 (V 12 +V 21), see eq. [1] - c = 2N s 0 V s see eq. [6] - k Boltzmann constant - t time - E,E 1,E 2 spring constants, see figures 1 and 3 - E u unrelaxed modulus - N 1 0 site 1 equilibrium population in the unstressed state - N s number of units available for slip - N(t) decrease in site 1 population - N s (t) net number of slip jumps in the stressaided direction - T temperature (K) - V i,j activation volume for jumps in directioni j - V s activation volume for the slip process - strain - strain rate - incremental change in strain per unit change in site population - µ,µ 1,µ 2 dashpot constants, see figures 1 and 3 - applied stress - 0 initial applied stress, (stress relaxation) =(t) (creep) - incremental change in stress per unit change in site population - 0 jump rate for slip in the unstressed state - i,j 0 jump rate in the directioni j in the unstressed state With 3 figures and 3 tables  相似文献   

19.
The influence of maneuvering on the chaotic response of a fluttering buckled plate on an aircraft has been studied. The governing equations, derived using Lagrangian mechanics, include geometric non-linearities associated with the occurrence of tensile stresses, as well as coupling between the angular velocity of the maneuver and the elastic degrees of freedom. Numerical simulation for periodic and chaotic responses are conducted in order to analyze the influence of the pull-up maneuver on the dynamic behavior of the panel. Long-time histories phase-plane plots, and power spectra of the responses are presented. As the maneuver (load factor) increases, the system exhibits complicated dynamic behavior including a direct and inverse cascade of subharmonic bifurcations, intermittency, and chaos. Beside these classical routes of transition from a periodic state to chaos, our calculations suggest amplitude modulation as a possible new mode of transition to chaos. Consequently this research contributes to the understanding of the mechanisms through which the transition between periodic and strange attractors occurs in, dissipative mechanical systems. In the case of a prescribed time dependent maneuver, a remarkable transition between the different types of limit cycles is presented.Nomenclature a plate length - a r u r /h - D plate bending stiffness - E modulus of elasticity - g acceleration due to gravity - h plate thickness - j1,j2,j3 base vectors of the body frame of reference - K spring constant - M Mach number - n 1 + 0/g - N 1 applied in-plane force - pp aerodynamic pressure - P pa 4/Dh - q 0/2 - Q r generalized Lagrangian forces - R rotation matrix - R 4 N, a 2/D - t time - kinetic energy - u plate deflection - u displacement of the structure - u r modal amplitude - v0 velocity - x coordinates in the inertial frame of reference - z coordinates in the body frame of reference - Ka/(Ka+Eh) - - elastic energy - 2qa 3/D - a/mh - Poisson's ratio - material coordinates - air density - m plate density - - r prescribed functions - r sin(r z/a) - angular velocity - a/v0 - skew-symmetric matrix form of the angular velocity  相似文献   

20.
The linear stability theory is used to study stability characteristics of laminar condensate film flow down an arbitrarily inclined wall. A critical Reynolds number exists above which disturbances will be amplified. The magnitude of the critical Reynolds number is in all practical situations so small that a laminar gravity-induced condensate film can be expected to be unstable. Several stabilizing effects are acting on the film flow; at an inclined wall these effects are due to surface tension, gravity and condensation mass transfer.
Zusammenfassung Mit Hilfe der linearen Stabilitätstheorie werden die Stabilitätseigenschaften laminarer Kondensatfilme an einer geneigten Wand untersucht. Es zeigt sich, daß Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einfluß von Oberflächenspannung, Schwerkraft und Stoffübertragung durch Kondensation bewkkt jedoch, daß Störungen in bestimmten Wellenlängenbereichen gedämpft werden.

Nomenclature c=c*/u0 complex wave velocity, celerity, dimensionless - c*=c r * + i c i * complex wave velocity, celerity, dimensional - cp specific heat at constant pressure - g gravitational acceleration - hfg latent heat - k thermal conductivity of liquid - p* pressure - p=p*/u0 2 dimensionless pressure - Pe=Pr Re* Peclet number - Pr Prandtl number - Re*=u0 / Reynolds number (defined with surface velocity) - S temperature perturbation amplitude - t* time - t=t* u0/ dimensionless time - T temperature - Ts saturation temperature - Tw wall temperature - T=Ts-Tw temperature drop across liquid film - u*, v* velocity components - u=u*/u0 dimensionless velocity components - v=v*/u0 dimensionless velocity components - u0 surface velocity of undisturbed film flow - v g * vapor velocity - x*, y* coordinates - x=x*/ dimensionless coordinates - y=y*/ dimensionless coordinates Greek Symbols =* wave number, dimensionless - *=2 /* wave number dimensional - * wave length, dimensional - =*/ wave length, dimensionless - local thickness of undisturbed condensate film - kinematic viscosity, liquid - density, liquid - g density vapor - surface tension - = (1 +) film thickness of disturbed film, Fig. 1 - stream function perturbation amplitude - angle of inclination Base flow quantities are denoted by, disturbance quantities are denoted by.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号