首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The parity-violating Lagrangian of the weak nucleon-nucleon (NN) interaction in the pionless effective field theory (EFT( \({/\!\!\!\pi}\) )) approach contains five independent unknown low-energy coupling constants (LECs). The photon asymmetry with respect to neutron polarization in \({np\rightarrow d\gamma A_\gamma^{np}}\) , the circular polarization of outgoing photon in \({np\rightarrow d\gamma P_\gamma^{np}}\) , the neutron spin rotation in hydrogen \({\frac{1}{\rho}\frac{d\phi^{np}}{dl}}\) , the neutron spin rotation in deuterium \({\frac{1}{\rho}\frac{d\phi^{nd}}{dl}}\) and the circular polarization of γ-emission in \({nd\rightarrow}\) 3 \({P^{nd}_\gamma}\) are the parity-violating observables which have been recently calculated in terms of parity-violating LECs in the EFT( \({/\!\!\!\pi}\) ) framework. We obtain the LECs by matching the parity-violating observables to the Desplanques, Donoghue, and Holstein (DDH) best value estimates. Then, we evaluate photon asymmetry with respect to the neutron polarization \({a^{nd}_\gamma}\) and the photon asymmetry in relation to deuteron polarization \({A^{nd}_\gamma}\) in \({nd\rightarrow}\) 3 process. We finally compare our EFT( \({/\!\!\!\pi}\) ) photon asymmetries results with the experimental values and the previous calculations based on the DDH model.  相似文献   

2.
The large isospin symmetry breaking found in the X(3872) decay is investigated by looking into the transfer strength from the \({{c}\bar{c}}\) quarkonium to the two-meson states: \({c\bar{c} \rightarrow D^{0}\overline{D}^{*0}, D^{+} D^{*-} , J /\psi\omega, {\rm and} \, J /\psi\rho}\) . The widths of the \({\rho}\) and \({\omega}\) mesons are taken into account in the calculation. It is found that very narrow \({J /\psi\omega}\) and \({J /\psi\rho}\) peaks appear at the \({D^{0}\overline{D}^{*0}}\) threshold. These narrow peaks appear provided that the strength of the \({D^{0}\overline{D}^{*0}}\) component is large around the threshold. The large width of the \({\rho}\) meson enhances the isospin-one component in the transfer strength considerably, which reduces the ratio \({{\rm Br}(X \rightarrow J /\psi\omega)/{\rm Br}(X \rightarrow J /\psi\rho)}\) down to 2.5.  相似文献   

3.
For the Schrödinger map equation \({u_t = u \times \triangle u \, {\rm in} \, \mathbb{R}^{2+1}}\) , with values in S 2, we prove for any \({\nu > 1}\) the existence of equivariant finite time blow up solutions of the form \({u(x, t) = \phi(\lambda(t) x) + \zeta(x, t)}\) , where \({\phi}\) is a lowest energy steady state, \({\lambda(t) = t^{-1/2-\nu}}\) and \({\zeta(t)}\) is arbitrary small in \({\dot H^1 \cap \dot H^2}\) .  相似文献   

4.
In the X (3872) decay, both of the ${{J/{\psi\pi\pi}}}$ and ${{J/{\psi\pi\pi\pi}}}$ branching fractions are observed experimentally, and their sizes are comparable to each other. In order to clarify the mechanism to cause such a large isospin violation, we investigate X(3872) employing a model of coupled-channel two-meson scattering with a ${{\rm c}\bar{c}}$ core. The two-meson states consist of ${{D^0\overline{D}^{*0}}}$ , D + D *?, ${{J/{\psi\rho}}}$ , and ${{J/{\psi\omega}}}$ . The effects of the ρ and ω meson width are also taken into account. We calculate the transfer strength from the ${{{\rm c}\bar{c}}}$ core to the final two-meson states. It is found that very narrow ${{J/{\psi\rho}}}$ and ${{J/{\psi\omega}}}$ peaks appear very close to the ${{D^0\overline{D}^{*0}}}$ threshold for a wide range of variation in the parameter sets. The size of the ${{J/{\psi\rho}}}$ peak is almost the same as that of ${{J/{\psi\omega}}}$ , which is consistent with the experiments. The large width of the ρ meson makes the originally small isospin violation by about five times larger.  相似文献   

5.
We prove the following theorem on bounded operators in quantum field theory: if \({\|[B,B^*(x)]\|\leqslant{\rm const}D(x)}\) , then \({\|B^k_\pm(\nu)G(P^0)\|^2\leqslant{\rm const}\int D(x - y){\rm d}|\nu|(x){\rm d}|\nu|(y)}\) , where D(x) is a function weakly decaying in spacelike directions, \({B^k_\pm}\) are creation/annihilation parts of an appropriate time derivative of B, G is any positive, bounded, non-increasing function in \({L^2(\mathbb{R})}\) , and \({\nu}\) is any finite complex Borel measure; creation/annihilation operators may be also replaced by \({B^k_t}\) with \({\check{B^k_t}(p)=|p|^k\check{B}(p)}\) . We also use the notion of energy-momentum scaling degree of B with respect to a submanifold (Steinmann-type, but in momentum space, and applied to the norm of an operator). These two tools are applied to the analysis of singularities of \({\check{B}(p)G(P^0)}\) . We prove, among others, the following statement (modulo some more specific assumptions): outside p = 0 the only allowed contributions to this functional which are concentrated on a submanifold (including the trivial one—a single point) are Dirac measures on hypersurfaces (if the decay of D is not to slow).  相似文献   

6.
A chiral-motivated \({\bar{K}N - \pi\Sigma - \pi\Lambda}\) potential was constructed and used in Faddeev calculations of different characteristics of \({\bar{K}NN - \pi\Sigma N}\) system. First of all, binding energy and width of the K ? pp quasi-bound state were newly obtained. The low-energy K ? d scattering amplitudes, including scattering length, together with the 1s level shift and width of kaonic deuterium were calculated. Comparison with the results obtained with the phenomenological \({\bar{K}N - \pi\Sigma}\) potential demonstrates that the chiral-motivated potential gives more shallow K ? pp state, while the characteristics of K ? d system are less sensitive to the form of \({\bar{K}N}\) interaction.  相似文献   

7.
We show that the Kadison–Singer problem, asking whether the pure states of the diagonal subalgebra \({\ell^\infty\mathbb{N}\subset \mathcal{B}(\ell^2\mathbb{N})}\) have unique state extensions to \({\mathcal{B}(\ell^2\mathbb{N})}\) , is equivalent to a similar statement in II1 factor framework, concerning the ultrapower inclusion \({D^\omega \subset R^\omega}\) , where D is the Cartan subalgebra of the hyperfinite II1 factor R (i.e., a maximal abelian *-subalgebra of R whose normalizer generates R, e.g. \({D=L^\infty([0, 1]^{\mathbb{Z}}) \subset L^\infty([0,1]^{\mathbb{Z}} \rtimes \mathbb{Z} = R)}\) , and ω is a free ultrafilter. Instead, we prove here that if A is any singular maximal abelian *-subalgebra of R (i.e., whose normalizer consists of the unitary group of A, e.g. \({A=L(\mathbb{Z})\subset L^\infty([0,1]^\mathbb{Z})\rtimes \mathbb{Z}=R}\) ), then the inclusion \({A^\omega \subset R^\omega}\) does satisfy the Kadison–Singer property.  相似文献   

8.
A new technique is proposed for the solution of the Riemann–Hilbert problem with the Chebotarev–Khrapkov matrix coefficient \({G(t) = \alpha_{1}(t)I + \alpha_{2}(t)Q(t)}\) , \({\alpha_{1}(t), \alpha_{2}(t) \in H(L)}\) , I = diag{1, 1}, Q(t) is a \({2\times2}\) zero-trace polynomial matrix. This problem has numerous applications in elasticity and diffraction theory. The main feature of the method is the removal of essential singularities of the solution to the associated homogeneous scalar Riemann–Hilbert problem on the hyperelliptic surface of an algebraic function by means of the Baker–Akhiezer function. The consequent application of this function for the derivation of the general solution to the vector Riemann–Hilbert problem requires the finding of the \({\rho}\) zeros of the Baker–Akhiezer function ( \({\rho}\) is the genus of the surface). These zeros are recovered through the solution to the associated Jacobi problem of inversion of abelian integrals or, equivalently, the determination of the zeros of the associated degree- \({\rho}\) polynomial and solution of a certain linear algebraic system of \({\rho}\) equations.  相似文献   

9.
Charmonium ( \({c \bar{c}}\) ) bound states in few-nucleon systems, 2H, 4He and 8Be, are studied via Gaussian Expansion Method (GEM). We adopt a Gaussian potential as an effective \({(c \bar{c})}\) –nucleon (N) interaction. The relation between two-body \({(c \bar{c})}\) N scattering length \({a_{c\bar{c}-N}}\) and the binding energies B of \({(c \bar{c})}\) –nucleus bound states are given. Recent lattice QCD data of \({a_{c\bar{c}-N}}\) corresponds to \({B \simeq 0.5}\) MeV for \({(c \bar{c})-^{4}}\) He and 2 MeV for \({(c \bar{c})-^{8}}\) Be in our results.  相似文献   

10.
We consider the Ising model on \(\mathbb Z\times \mathbb Z\) where on each horizontal line \(\{(x,i), x\in \mathbb Z\}\) , called “layer”, the interaction is given by a ferromagnetic Kac potential with coupling strength \(J_{ \gamma }(x,y)={ \gamma }J({ \gamma }(x-y))\) , where \(J(\cdot )\) is smooth and has compact support; we then add a nearest neighbor ferromagnetic vertical interaction of strength \({ \gamma }^{A}\) , where \(A\ge 2\) is fixed, and prove that for any \(\beta \) larger than the mean field critical value there is a phase transition for all \({ \gamma }\) small enough.  相似文献   

11.
Classes of renormalizable models in the Tensorial Group Field Theory framework are investigated. The rank d tensor fields are defined over d copies of a group manifold \({G_D=U(1)^D}\) or \({G_D= SU(2)^D}\) with no symmetry and no gauge invariance assumed on the fields. In particular, we explore the space of renormalizable models endowed with a kinetic term corresponding to a sum of momenta of the form \({p^{2a}, a\in (0,1]}\) . This study is tailored for models equipped with Laplacian dynamics on G D (case a = 1) but also for more exotic nonlocal models in quantum topology (case 0 < a < 1). A generic model can be written \({(_{\dim G_D}\Phi^{k}_{d}, a)}\) , where k is the maximal valence of its interactions. Using a multi-scale analysis for the generic situation, we identify several classes of renormalizable actions, including matrix model actions. In this specific instance, we find a tower of renormalizable matrix models parametrized by \({k \geq 4}\) . In a second part of this work, we study the UV behavior of the models up to maximal valence of interaction k = 6. All rank \({d \geq 3}\) tensor models proved renormalizable are asymptotically free in the UV. All matrix models with k = 4 have a vanishing β-function at one-loop and, very likely, reproduce the same feature of the Grosse–Wulkenhaar model (Commun Math Phys 256:305, 2005).  相似文献   

12.
We study quartic matrix models with partition function \({\mathcal{Z}[E, J] = \int dM}\) exp(trace \({(JM - EM^{2} - \frac{\lambda}{4} M^4)}\) ). The integral is over the space of Hermitean \({\mathcal{N} \times \mathcal{N}}\) -matrices, the external matrix E encodes the dynamics, \({\lambda > 0}\) is a scalar coupling constant and the matrix J is used to generate correlation functions. For E not a multiple of the identity matrix, we prove a universal algebraic recursion formula which gives all higher correlation functions in terms of the 2-point function and the distinct eigenvalues of E. The 2-point function itself satisfies a closed non-linear equation which must be solved case by case for given E. These results imply that if the 2-point function of a quartic matrix model is renormalisable by mass and wavefunction renormalisation, then the entire model is renormalisable and has vanishing β-function. As the main application we prove that Euclidean \({\phi^4}\) -quantum field theory on four-dimensional Moyal space with harmonic propagation, taken at its self-duality point and in the infinite volume limit, is exactly solvable and non-trivial. This model is a quartic matrix model, where E has for \({\mathcal{N} \to \infty}\) the same spectrum as the Laplace operator in four dimensions. Using the theory of singular integral equations of Carleman type we compute (for \({\mathcal{N} \to \infty}\) and after renormalisation of \({E, \lambda}\) ) the free energy density (1/volume) log \({(\mathcal{Z}[E, J]/\mathcal{Z}[E, 0])}\) exactly in terms of the solution of a non-linear integral equation. Existence of a solution is proved via the Schauder fixed point theorem. The derivation of the non-linear integral equation relies on an assumption which in subsequent work is verified for coupling constants \({\lambda \leq 0}\) .  相似文献   

13.
Based on the chiral perturbation theory, we investigate the low-energy dynamics of nucleon parton distributions. We show that in different regions of the momentum fraction x the chiral expansion is significantly different. For nucleon parton distributions these regions are characterized by x ~ 1, x ~ m π /M N and \({x \sim (m_{\pi}/M_{N})^2}\) . We derive extended counting rules for each region and obtain model-independent results for the nucleon parton distributions down to \({x \gtrsim m^{2}_{\pi}/M^2_{N} \approx 10^{-2} }\) .  相似文献   

14.
It is well-known that three-boson systems show the Efimov effect when the two-body scattering length a is large with respect to the range of the two-body interaction. This effect is a manifestation of a discrete scaling invariance (DSI). In this work we study DSI in the N-body system by analysing the spectrum of N identical bosons obtained with a pairwise gaussian interaction close to the unitary limit. We consider different universal ratios such as \({E_N^0/E_3^0}\) and \({E_N^1/E_N^0}\) , with \({E_N^i}\) being the energy of the ground (i = 0) and first-excited (i = 1) state of the system, for \({N \leq16}\) . We discuss the extension of the Efimov radial law, derived by Efimov for N = 3, to general N.  相似文献   

15.
We consider a smooth Riemannian metric tensor g on \({\mathbb{R}^n}\) and study the stochastic wave equation for the Laplace-Beltrami operator \({\partial_t^2 u - \Delta_g u = F}\) . Here, F = F(t, x, ω) is a random source that has white noise distribution supported on the boundary of some smooth compact domain \({M \subset \mathbb{R}^n}\) . We study the following formally posed inverse problem with only one measurement. Suppose that g is known only outside of a compact subset of M int and that a solution \({u(t, x, \omega_0)}\) is produced by a single realization of the source \({F(t, x, \omega_0)}\) . We ask what information regarding g can be recovered by measuring \({u(t, x, \omega_0)}\) on \({\mathbb{R}_+ \times \partial M}\) ? We prove that such measurement together with the realization of the source determine the scattering relation of the Riemannian manifold (M, g) with probability one. That is, for all geodesics passing through M, the travel times together with the entering and exit points and directions are determined. In particular, if (M, g) is a simple Riemannian manifold and g is conformally Euclidian in M, the measurement determines the metric g in M.  相似文献   

16.
Antiproton-deuteron scattering is analyzed within the Glauber theory, accounting for the full spin dependence of the underlying \({\bar{N}N}\) amplitudes. The latter are taken from the Jülich \({\bar{N}N}\) models and from a recently published new partial-wave analysis of \({\bar{p}p}\) scattering data. Predictions for differential cross sections and the spin observables \({A_y^d}\) , \({A_y^{\bar{p}}}\) , A xx , A yy are presented for antiproton beam energies up to about 300 MeV. The efficiency of the polarization buildup for antiprotons in a storage ring is investigated.  相似文献   

17.
We consider a quantum lattice system with infinite-dimensional on-site Hilbert space, very similar to the Bose–Hubbard model. We investigate many-body localization in this model, induced by thermal fluctuations rather than disorder in the Hamiltonian. We provide evidence that the Green–Kubo conductivity κ(β), defined as the time-integrated current autocorrelation function, decays faster than any polynomial in the inverse temperature β as \({\beta \to 0}\) . More precisely, we define approximations \({\kappa_{\tau}(\beta)}\) to κ(β) by integrating the current-current autocorrelation function up to a large but finite time \({\tau}\) and we rigorously show that \({\beta^{-n}\kappa_{\beta^{-m}}(\beta)}\) vanishes as \({\beta \to 0}\) , for any \({n,m \in \mathbb{N}}\) such that m?n is sufficiently large.  相似文献   

18.
We extract the form factors relevant for semileptonic decays of D and B mesons from a relativistic computation on a fine lattice in the quenched approximation. The lattice spacing is a = 0.04 fm (corresponding to a -1 = 4.97 GeV), which allows us to run very close to the physical B meson mass, and to reduce the systematic errors associated with the extrapolation in terms of a heavy-quark expansion. For decays of D and Ds mesons, our results for the physical form factors at $\ensuremath q^2 = 0$ are as follows: $\ensuremath f_+^{D\rightarrow\pi}(0) = 0.74(6)(4)$ , $\ensuremath f_+^{D \rightarrow K}(0) = 0.78(5)(4)$ and $\ensuremath f_+^{D_s \rightarrow K} (0) = 0.68(4)(3)$ . Similarly, for B and Bs we find $\ensuremath f_+^{B\rightarrow\pi}(0) = 0.27(7)(5)$ , $\ensuremath f_+^{B\rightarrow K} (0) = 0.32(6)(6)$ and $\ensuremath f_+^{B_s\rightarrow K}(0) = 0.23(5)(4)$ . We compare our results with other quenched and unquenched lattice calculations, as well as with light-cone sum rule predictions, finding good agreement.  相似文献   

19.
We give a new definition of dimension spectrum for non-regular spectral triples and compute the exact (i.e., not only the asymptotics) heat-trace of standard Podle? spheres \({S^2_q}\) for 0 < q < 1, study its behaviour when \({q\to 1}\) , and fully compute its exact spectral action for an explicit class of cut-off functions.  相似文献   

20.
Gaussian Multiplicative Chaos is a way to produce a measure on \({\mathbb{R}^d}\) (or subdomain of \({\mathbb{R}^d}\) ) of the form \({e^{\gamma X(x)} dx}\) , where X is a log-correlated Gaussian field and \({\gamma \in [0, \sqrt{2d})}\) is a fixed constant. A renormalization procedure is needed to make this precise, since X oscillates between ?∞ and ∞ and is not a function in the usual sense. This procedure yields the zero measure when \({\gamma = \sqrt{2d}}\) . Two methods have been proposed to produce a non-trivial measure when \({\gamma = \sqrt{2d}}\) . The first involves taking a derivative at \({\gamma = \sqrt{2d}}\) (and was studied in an earlier paper by the current authors), while the second involves a modified renormalization scheme. We show here that the two constructions are equivalent and use this fact to deduce several quantitative properties of the random measure. In particular, we complete the study of the moments of the derivative multiplicative chaos, which allows us to establish the KPZ formula at criticality. The case of two-dimensional (massless or massive) Gaussian free fields is also covered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号