首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The optical spectra of the CdTe/Cd0.7Mn0.3Te structure containing three CdTe quantum wells with nominal thicknesses of 16, 8, and 4 monolayers have been investigated. The temperature dependences of parameters of the exciton luminescence spectra (integrated intensity, full-width at half-maximum, position of the maximum, Stokes shift) for quantum wells with different thicknesses differ substantially. These differences are explained by a strong thickness dependence of the energy of Coulomb coupling in the exciton, the energy of localization of the exciton on bulges of the quantum well, and the degree of penetration of the exciton wave function into the barrier. At high excitation power densities, the emission contours of the quantum wells with thicknesses of 8 and 16 monolayers contain short-wavelength tails that correspond to optical transitions between excited quantum-well levels.  相似文献   

2.
The dynamics of the phase transition from an electron-hole plasma to an exciton gas is studied during pulsed excitation of heterostructures with Si1 ? x Ge x /Si quantum wells. The scenario of the phase transition is shown to depend radically on the germanium content in the Si1 ? x Ge x layer. The electron-hole system decomposes into a rarefied exciton and a dense plasma phases for quantum wells with a germanium content x = 3.5% in the time range 100–500 ns after an excitation pulse. In this case, the electron-hole plasma existing in quantum wells has all signs of an electron-hole liquid. A qualitatively different picture of the phase transition is observed for quantum wells with x = 9.5%, where no separation into phases with different electronic spectra is detected. The carrier recombination in the electron-hole plasma leads a gradual weakening of screening and the appearance of exciton states. For a germanium content of 5–7%, the scenario of the phase transition is complex: 20–250 ns after an excitation pulse, the properties of the electron-hole system are described in terms of a homogeneous electron-hole plasma, whereas its separation into an electron-hole liquid and an exciton gas is detected after 350 ns. It is shown that, for the electron-hole liquid to exist in quantum wells with x = 5–7% Ge, the exciton gas should have a substantially higher density than in quantum wells with x = 3.5% Ge. This finding agrees with a decrease in the depth of the local minimum of the electron-hole plasma energy with increasing germanium concentration in the SiGe layer. An increase in the density of the exciton gas coexisting with the electron-hole liquid is shown to enhance the role of multiparticle states, which are likely to be represented by trions T + and biexcitons, in the exciton gas.  相似文献   

3.
Polaron effects on excitons in parabolic quantum wells are studied theoretically by using a variational approach with the so-called fractional dimension model. The numerical results for the exciton binding energies and longitudinal-optical phonon contributions in GaAs/Al0.3Ga0.7As parabolic quantum well structures are obtained as functions of the well width. It is shown that the exciton binding energies are obviously reduced by the electron (hole)-phonon interaction and the polaron effects are un-negligible. The results demonstrate that the fractional-dimension variational theory is effectual in the investigations of excitonic polaron problems in parabolic quantum wells.  相似文献   

4.
The exciton dynamics in Ga1  xInxAs/GaAs self-organized quantum dots grown on GaAs (111)B substrates are studied by the time-resolved photoluminescence (PL). We have found the intra-dot exciton relaxation by the reduction of the linewidth and peak energy and also by the energy-dependent PL rise time in the transient PL spectra. Compared with the energy relaxation in the reference quantum wells, we have confirmed that the exciton relaxation in three-dimensionally confined quantum dots is slower than in the quantum wells.  相似文献   

5.
用分子束外延在GaAs衬底上生长了CdSe/CdMnSe多量子阱结构.利用X射线衍射(XRD)、变密度激发的PL光谱、变温度PL光谱和变密度激发的ps时间分辨光谱研究了CdSe/CdMnSe多量子阱结构和激子复合特性.讨论了随温度升高辐射线宽展宽和辐射复合效率降低的机理.发现不同激发密度下发光衰减时间不同,认为它的机理可能是无辐射复合引起的.在该材料中观测到激子激子散射发射峰,它被变密度激发和变温度PL光谱所证实. 关键词: CdSe/CdMnSe 量子阱 光学性质  相似文献   

6.
Hot exciton relaxation is observed in GaAs/Al x Ga1–x As multiple quantum wells. The photolumnescence excitation spectra of the localized exciton emission at low temperatures and excitation densities are composed of narrow equidistant peaks exactly separated by the GaAs LO-phonon energy (36 meV). The relaxation mechanism via LO-phonons is found to be important for localized excitons in multiple quantum wells with GaAs layer thicknesses of about 50 Å, where pronounced alloy fluctuations in the barriers provide a strong additional lateral potential which suppresses the dissociation of hot excitons.  相似文献   

7.
Photoluminescence attributed to excitons bound to neutral impurities has been observed from GaAs quantum wells in AlxGa1?xAs-GaAs heterostructures grown by molecular beam epitaxy. The quantum wells were either doped with [Be] ≈ 1017 cm-3 or Zn-diffused. At low temperatures both single and multiple quantum wells exhibited this extrinsic luminescence which is ascribed to the radiative recombination of the n=1 ground state heavy hole exciton E1h bound to a neutral acceptor Ao. The dissociation energy ED of the Ao-E1h complex is obtained directly from the measured separation of this extrinsic peak from the intrinsic E1h free exciton peak. For 46Å wide GaAs wells, ED=6.5meV and ED decreases with increasing well width.  相似文献   

8.
Binding energies of Wannier excitons in a quantum well structure consisting of a single slab of GaAs sandwiched between two semi-infinite slabs of Ga1?xAlxAs are calculated using a variational approach. Due to reduction in symmetry along the axis of growth of these quantum well structures and the presence of band discontinuities at the interfaces, the degeneracy of the valence band of GaAs is removed leading to two exciton systems, namely, the heavy hole exciton and the light hole exciton. The variations of the binding energies of these two excitons as a function of the size of the GaAs quantum wells for various values of the heights of the potential barrier are calculated and their behavior is discussed.  相似文献   

9.
The luminescence peak energy and tunneling lifetime of an exciton in a semiconductor quantum well with a small valence band offset in the presence of a perpendicular electric field is calculated by generalizing the variational approach of quantum confined Stark effect normally used for systems of GaAs/AlGaAs quantum wells. At a finite electric field, the electron-hole Coulomb interaction provides additional confinement to each of the carriers and significantly enhances the Stark shift and the exciton lifetime against field ionization. Numerical results are presented for ZnSe/Zn1−xMnxSe heterostructures studies in recent experiments.  相似文献   

10.
The optical refractive index changes and absorption coefficients of quantum wells (QWs) are theoretically investigated with considering exciton effects within the framework of the fractional-dimensional space approach. The exciton wave functions and bound energies are obtained as a function of spatial dimensionality, and the dimension increases with the well width increasing. Then optical properties are obtained by using the compact-density matrix approach and an iterative method. Numerical results are presented for wurtzite ZnO/MgxZn1−xO QWs. The calculated results show that the changes of refractive index and absorption coefficients are greatly enhanced due to the quantum confinement of exciton. And the smaller the QW width (dimension) is, the larger influence of exciton on the optical properties will be. Furthermore, the exciton effects make the resonant peaks move to a lower energy. In addition, the optical properties are related to the QW width, the incident optical intensity and carrier density.  相似文献   

11.
Z.P. Wang  X.X. Liang 《Physics letters. A》2009,373(30):2596-2599
Electron-phonon effects on Stark shifts of excitons in parabolic quantum wells are studied theoretically by using a fractional dimension method in combination with a Lee-Low-Pines-like transformation and a perturbation theory. The numerical results for the exciton binding energies and electron-phonon contributions to the binding energies as functions of the well width and the electric field in the Al0.3Ga0.7As parabolic quantum well structure are obtained. It is shown that both exciton binding energy and electron-phonon contributions have a maximum with increasing the well width. The binding energy and electron-phonon contribution decrease significantly with increasing the electric-field strength, in special in the wide-well case.  相似文献   

12.
Photovoltaic Spectroscopy is used to study lattice matched Au/InGaAsP/InP multiple quantum wells at 4.2 < T < 300 K. Four quantum transitions are clearly identified in the spectra and their temperature shift mapped. The Au/InGaAsP Schottky barrier is found to be nearly temperature independent at φB ≃ 0.68 eV, and the binding energy of the 11H associated exciton estimated at Eb ≃ 11 meV. The 11H exciton displays a small electric field shift, to the red at low T, changing over to a blue shift at higher temperatures.  相似文献   

13.
The effect of the excitation level on the dynamics of heavy-hole exciton photoluminescence in tunneling-isolated GaAs/Al x Ga1 − x As (x = 0.05) shallow quantum wells at temperatures of 5 to 70 K is investigated. It is shown that the exciton lifetimes depend strongly on the excitation level, while the activation energies characterizing the thermal escape of nonequilibrium charge carriers from the wells virtually do not.  相似文献   

14.
We present low temperature photoluminescence investigations of the exciton ground state of In0.14Ga0.86As/GaAs quantum wells (QW) in the presence of pulsed magnetic fields up to 50 T. The exciton in-plane reduced mass and the heavy-hole in-plane mass are determined from the best fit of theoretical calculations to the magnetic field dependence of PL peaks. When the QW thickness decreases, their masses increases due to valence-band mixing effect.  相似文献   

15.
We propose to use the exciton coupling between electrons and holes in different quantum wells to reach a strong Coulomb drag effect. The drag has to be really strong below the Mott transition when the most of the carriers are bound in excitons. We suggest to use the exciton drag for fabrication of DC transformer. Preliminary estimates for Si/SiO2/Si structure give the Mott transition temperature of the order of 100 K.  相似文献   

16.
The exciton-polariton transfer and absorption in regular and disordered structures with a finite number of quantum wells are studied theoretically. The transfer matrix method is invoked in the exciton resonance region to calculate the reflectivity, transmissivity, and absorptivity spectra, as well as the integrated absorptivity as a function of the γ/Γ0 ratio of the parameters of nonradiative and radiative damping of quasi-two-dimensional excitons. It is shown that the integrated absorptivity as a function of γ (temperature) follows a universal pattern, more specifically, it increases monotonically from zero at γ = 0 to saturate at γ/Γ0 ? 1. Because the exciton-polariton absorption being single mode, the integrated absorptivity in Bragg quantum-well structures is substantially lower than that in short-period structures, in which absorption involves the whole spectral multitude of modes. The intrawell disorder associated with fluctuations in the frequencies of exciton excitation in quantum wells enhances the integrated absorptivity to the level typical of light absorption with no resonance among excitons of different quantum wells. The interwell disorder originating from fluctuations in quantum-well separation likewise leads to an increase in the integrated absorptivity.  相似文献   

17.
m面蓝宝石上ZnO/ZnMgO多量子阱的制备及发光特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
宿世臣  吕有明  梅霆 《物理学报》2011,60(9):96801-096801
利用等离子体辅助分子束外延设备(P-MBE)在m面的蓝宝石(m-Al2O3)衬底上制备了ZnO/Zn0.85Mg0.15O多量子阱.反射式高能电子衍射谱(RHEED)图样的原位观察表明,多量子阱结构是以二维模式生长的.从光致发光谱中可以看到ZnO/Zn0.85Mg0.15O多量子阱在室温仍具有明显的量子限域效应.在290 K时阱宽为3 nm的ZnO/Zn0.85关键词: 等离子体辅助分子束外延 ZnO多量子阱 光致发光  相似文献   

18.
Processes occurring when a static transverse electric field is applied to a GaAs/AlGaAs n-i-n heterostructure with single quantum wells and asymmetric tunnel-coupled double quantum wells have been investigated by optical methods. The difference between the energies of exciton transitions for quantum wells of different widths makes it possible to attribute the observed photoluminescence peaks to particular pairs of wells or particular single quantum wells. The local electric field for each quantum well has been determined in terms of the Stark shift and splitting of exciton lines in a wide range of external voltage. A qualitative model has been proposed to explain the nonmonotonic distribution of the electric field over the depth of the heterostructure.  相似文献   

19.
The dynamics and stimulated emission processes of the exciton luminescence are studied in quantum wells (QWs) of the Zn1-xCdxSe/ZnSe system. A multiquantum well (MQW) structure shows an exciton lifetime of 150-280 ps and a stimulated emission effect due to exciton-exciton scattering as well as due to electron-hole plasma recombination. A combined-QW structure in which a single quantum well (SQW) is located adjacent to MQWs shows a tunneling process of the excitons from the MQWs through the barriers to the SQW. The stimulated emission takes place in the SQW due to phase space filling effects of the excitons. These observed stimulated emission processes are highly related to the blue-laser-diode operation at both low and room temperatures.  相似文献   

20.
The mixing between the Γ and X conduction-band valleys in GaAs-Ga1-xAlxAs quantum wells is investigated by using a phenomenological model which takes into account the effects of applied hydrostatic pressure. The dependencies of the variationally calculated photoluminescence peak-energy transitions on the applied hydrostatic pressure and quantum-well width are presented. A systematic study of the Γ-X mixing parameter is also reported. In particular, it is shown that the inclusion of the Γ-X mixing explains the non-linear behavior in the photoluminescence peak of confined exciton states that has been experimentally observed for pressures above 15 kbar in GaAs-Ga1-xAlxAs quantum wells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号