首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
We investigated single electron tunneling (SET) behavior of dodecanethiol-coated Au nanoparticles of two different sizes (average sizes are 5 nm and 2 nm) using nanogap electrodes, which have a well-defined gap size, at various temperatures. The Coulomb staircases and the Coulomb gap near-zero bias voltage caused by the suppression of the tunneling electrons due to the Coulomb blockade effect were observed in the current-voltage (I-V) curves of both sizes of nanoparticles at a low temperature (10 K). At room temperature, the Coulomb gap was observed only in the I-V curve of the smaller nanoparticles. This result indicates that the charging energy of the smaller nanoparticles is enough to overcome the thermal energy at room temperature. This suggests that it is possible to operate the SET devices at room temperature using the smaller nanoparticles as a Coulomb island.  相似文献   

2.
苏丽娜  顾晓峰  秦华  闫大为 《物理学报》2013,62(7):77301-077301
本文首先建立单电子晶体管的电流解析模型, 然后将蒙特卡罗法与主方程法结合进行数值分析, 研究了栅极偏压、漏极偏压、温度与隧道结电阻等参数对器件特性的影响. 结果表明: 对于对称结, 库仑台阶随栅极偏压增大而漂移; 漏极电压增大, 库仑振荡振幅增强, 库仑阻塞则衰减; 温度升高将导致库仑台阶和库仑振荡现象消失. 对于非对称结, 源漏隧道结电阻比率增大, 库仑阻塞现象越明显. 关键词: 单电子晶体管 解析模型 蒙特卡罗法 主方程法  相似文献   

3.
We study admittance and energy dissipation in an out-of-equilibrium single electron box. The system consists of a small metallic island coupled to a massive reservoir via single tunneling junction. The potential of electrons in the island is controlled by an additional gate electrode. The energy dissipation is caused by an AC gate voltage. The case of a strong Coulomb blockade is considered. We focus on the regime when electron coherence can be neglected but quantum fluctuations of charge are strong due to Coulomb interaction. We obtain the admittance under the specified conditions. It turns out that the energy dissipation rate can be expressed via charge relaxation resistance and renormalized gate capacitance even out of equilibrium. We suggest the admittance as a tool for a measurement of the bosonic distribution corresponding collective excitations in the system.  相似文献   

4.
Single-electron tunneling (SET) and Coulomb blockade (CB) phenomena have been widely observed in nanoscaled electronics and have received intense attention around the world. In the past few years, we have studied SET in carbon nanotube fragments and fullerenes by applying the so-called “Orthodox” theory [28]. As outlined in this review article, we investigated the single-electron charging and discharging process via current-voltage characteristics, gate effect, and electronic structure-related factors. Because the investigated geometric structures are three-dimensionally confined, resulting in a discrete spectrum of energy levels resembling the property of quantum dots, we evidenced the CB and Coulomb staircases in these structures. These nanostructures are sufficiently small that introducing even a single electron is sufficient to dramatically change the transport properties as a result of the charging energy associated with this extra electron. We found that the Coulomb staircases occur in the I–V characteristics only when the width of the left barrier junction is smaller than that of the right barrier junction. In this case, the transmission coefficient of the emitter junction is larger than that of the collector junction; also, occupied levels enter the bias window, thereby enhancing the tunneling extensively.   相似文献   

5.
We coincidently measure the molecular-frame photoelectron angular distribution and the ion sum-momentum distribution of single and double ionization of CO molecules by using circularly and elliptically polarized femtosecond laser pulses, respectively. The orientation dependent ionization rates for various kinetic energy releases allow us to individually identify the ionizations of multiple orbitals, ranging from the highest occupied to the next two lower-lying molecular orbitals for various channels observed in our experiments. Not only the emission of a single electron, but also the sequential tunneling dynamics of two electrons from multiple orbitals are traced step by step. Our results confirm that the shape of the ionizing orbitals determine the strong laser field tunneling ionization in the CO molecule, whereas the linear Stark effect plays a minor role.  相似文献   

6.
A common explanation is given for ion transport and strong broadband density fluctuations in tokamaks as a result of large anomalous electron transport near dominant magnetic surfaces (resp. in small magnetic islands). The main mechanism is local density flattening connected with an anomalous electron transport induced instationary radial electric field, which forces the ions via polarization drift to follow the electrons. For the density flattening process an exact solution of the time-dependent diffusion equation for a linear initial profile over the island width is used. From this we also derive an expression for a temporal growing radial electric field. This positive field reaches its maximum at the density plateau. Strong viscous diffusion or instability-induced transport between high and low electric field regions may now reverse the density flattening. Therefore relaxation oscillations result which may also explain the observed strong density and potential fluctuations in tokamaks. Several details of recent measurements of impurity ion behaviour and density fluctuations in tokamaks may be better explained with the theory given here.  相似文献   

7.
We present studies on the electric transport in a lateral GaAs/AlGaAs quantum dot defined by a patterned single connected metallic front-gate. This gate design allows to easily couple a large number of quantum dots and therefore holds high potential in the design of new materials with tailor-made band structures based on quantum dot superlattices of controlled shape. Clear Coulomb diamond structures and well pronounced tunneling peaks observed in experiment indicate that single-electron control has been achieved. However, the dependence on electron density in the heterostructure embedding the dot, which is controlled by an additional back-gate, reveals that transport characteristics are strongly influenced supposedly by potential fluctuations in the dot and lead regions.  相似文献   

8.
We report on shot noise cross spectrum measurements in a beam splitter configuration. Electrons tunneling through potential barriers are incident on a beam splitter and scattered into two separate channels. Such a partition process introduces correlations between the fluctuations of the two currents. Our work has confirmed that the generally expected negative correlations resulted from sub-Poissonian electron sources. More interestingly, positive cross correlations associated with barriers exhibiting super-Poissonian shot noise have also been observed. We have found that both positive and negative correlations can be related to the noise properties of the electron source.  相似文献   

9.
Single molecular shuttle-junction is one kind of nanoscale electromechanical tunneling system. In this junction, a molecular island oscillates depending on its charge occupation, and this charge dependent oscillation leads to modulation of electron tunneling through the molecular island. This paper reviews recent development on the study of current, shot noise and decoherence of electrons in the single molecular shuttle-junction. We will give detailed discussion on this topic using the typical system model, the theory of fully quantum master equation and the Aharonov–Bohm interferometer.  相似文献   

10.
We measure the average charge on the island of a single-electron box, with an accuracy of two thousandths of an electron. Thermal fluctuations alone cannot account for the dependence of the average charge on temperature, on external potential, or on the quasiparticle density of states in the metal from which the box is formed. In contrast, we find excellent agreement between these measurements and a theory that treats the quantum fluctuations of charge perturbatively.  相似文献   

11.
《Applied Surface Science》2005,239(3-4):335-341
We fabricated contact electrodes in Si for nanoelectronic device fabrication using 40 keV As ion implantation. Complete amorphization of the Si surface with contact electrodes using 400 eV Ar ion irradiation at room temperature followed by annealing at 700 °C produced Si surface with negligible SiC crystallites suitable for ultrahigh vacuum scanning tunneling microscope nanolithography. We could locate the implanted and unimplanted regions on Si and fabricate Si dangling bond wires between two contact electrodes, which is the first step for the fabrication of nanoelectronic devices in Si using UHV STM nanolithography.  相似文献   

12.
The rate of electron tunneling through normal metal tunnel junctions is calculated for the case of ultrasmall junction capacitances. The so-called Coulomb blockade of electron tunneling at low temperatures is shown to be strongly affected by the external electrical circuit. Under the common experimental condition of a low impedance environment the Coulomb blockade is suppressed for single tunnel junctions. However, a Coulomb gap structure emerges for junctions embedded in a high impedance environment. For a double junction setup a Coulomb blockade of tunneling arises even for low impedance environments due to the charge quantization on the metallic island between the junctions. An approach using circuit analysis is presented which allows to reduce the calculation of tunneling rates in multijunction circuits to those of a single junction in series with an effective capacitance. The range of validity of the socalled local rule and global rule rates is clarified. It is found that the tunneling rate tends towards the global rule rate as the number of junctions is increased. Some specific results are given for a one-dimensional array of tunnel junctions.  相似文献   

13.
A single-electron transistor (SET) is used to detect tunneling of single electrons into individual InGaAs self-assembled quantum dots (QDs). By using an SET with a small island area and growing QDs with a low density we are able to distinguish and measure three QDs. The bias voltage at which resonant tunneling into the dots occurs can be shifted using a surface gate electrode. From the applied voltages at which we observe electrons tunneling, we are able to measure the electron addition energies of three QDs.  相似文献   

14.
The ionized dopants, working as quantum dots in silicon nanowires, exhibit potential advantages for the development of atomic-scale transistors. We investigate single electron tunneling through a phosphorus dopant induced quantum dots array in heavily n-doped junctionless nanowire transistors. Several subpeaks splittings in current oscillations are clearly observed due to the coupling of the quantum dots at the temperature of 6 K. The transport behaviors change from resonance tunneling to hoping conduction with increased temperature. The charging energy of the phosphorus donors is approximately 12.8 meV. This work helps clear the basic mechanism of electron transport through donor-induced quantum dots and electron transport properties in the heavily doped nanowire through dopant engineering.  相似文献   

15.
An analytical analysis of quantum shuttle phenomena in a nanoelectromechanical single-electron transistor has been performed in the realistic case, when the electron tunneling length is much greater than the amplitude of the zero point oscillations of the central island. It is shown that when the dissipation is below a certain threshold value, the vibrational ground state of the central island is unstable. The steady state into which this instability develops is studied. It is found that if the electric field E between the leads is much greater than a characteristic value E(q), the quasiclassical shuttle picture is recovered, while if E0) shuttle vibrations.  相似文献   

16.
The decay of hexagonal Ag adatom islands on top of larger Ag adatom islands on a Ag(111) surface is followed by a fast-scanning tunneling microscope. Islands do not always show the expected increase in decay rate with decreasing island size. Rather, distinct quantum size effects are observed where the decay rate decreases significantly for islands with diameters of 6, 9.3, 12.6, and 15.6 nm. We show that electron confinement of the surface state electrons is responsible for this enhancement of the detachment barrier for adatoms from the island edge.  相似文献   

17.
We report a scanning tunneling spectroscopy study on the size-tunable isolated gold nanoclusters grown on thiol/dithiol mixed self-assembled monolayers (SAMs) where the effect of neighboring clusters are practically excluded. The structure forms double tunnel junction system in which the spectra exhibit Coulomb staircases. With increasing cluster size the standard deviation of the offset charge distribution for clusters increases, accompanied with the increase of total capacitance. The results are qualitatively same with the previous ones where clusters are densely grown on the substrate, indicating that this behavior is an intrinsic property for the double tunnel junction structures of tip/vacuum/single cluster/SAMs/Au(1 1 1) systems.  相似文献   

18.
通过纳米硅中量子点的共振隧穿   总被引:4,自引:0,他引:4       下载免费PDF全文
用纳米硅(nc-Si∶H)薄膜制成了隧道二极管,并在其I-V曲线上发现了不连续的量子化台阶.二极管的I-V曲线可分成二部分:(1)0—7V,电流随外加电压增大而增大;(2)7—9V,电流随外加电压急剧增大并出现三个量子化台阶.量子化台阶的出现直接与纳米硅中的晶粒有关,根据nc-Si∶H的独特结构,对载流子的传导通道进行了讨论;用通过nc-Si∶H中量子点的共振隧穿对I-V曲线进行了初步解释. 关键词:  相似文献   

19.
A double barrier Single Electron Transistor is realized in two dimensions by confining the 2-D electron gas of a GaAs/GaAlAs heterojunction to a small island by means of Schottky gates. Two gates provide adjustable tunnel barriers and a central gate controls the electron number in the island. The island has small single-particle energy level spacing and forms a metallic island. Periodic conductance oscillations characteristic of Coulomb blockade are observed when the central gate voltage is varied. The ability to vary the tunnel conductance allows us to study the basic physics of the Coulomb blockade: our results show that the quantum charge fluctuation mechanism which limits the tunneling blockade at low temperature is of second order in tunnel barrier transparencies in agreement with the charge Macroscopic Quantum Tunneling (q-MQT) or co-tunneling model.  相似文献   

20.
A theoretical study on the tunneling spectroscopy of an electron waveguide recently observed by Eugster and del Alamo is presented. A narrow electron waveguide coupled with another much wider one by a thin barrier between them is taken as a theoretical model for the leaky electron waveguide implemented by Eugster et al., and the transport properties of electrons are studied comprehensively through the wavefunction of the system. The results demonstrate that the conductance for the current tunneling out the barrier oscillates strongly with the width of the narrow electron waveguide, in line with its conductance steps. The theory is in good agreement with the experiments and confirm that the oscillations of the tunneling current can be considered as a spectroscopy of the 1D DOS (one dimensional electron density of states) in the electron waveguide as proposed by Eugster et al. In order to study the effects of scatterers on the transport properties of the leaky electron waveguide, a δ-function is used to simulate the scattering potential The results show that the presence of even a single scatterer located in the waveguide will lead to obvious distortion of the shape of conductance steps, and will greatly influence the oscillations of the tunneling current observed in clean waveguides. However the effects of scatterers located outside the tunneling barrier on either the conductance steps or the oscillations of the tunneling current are negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号