首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analytical solutions of the Schrödinger equation for a double quantum well structure (DQWS) subjected to an externally applied tilted magnetic field are obtained and the results are discussed. The dependency of the energy spectrum of the system on the applied magnetic field direction is also given.  相似文献   

2.
谭丹  冷永刚  范胜波  高毓璣 《物理学报》2015,64(6):60502-060502
以外加磁场压电悬臂梁能量采集系统结构为研究对象, 根据磁化电流方法探讨了具有悬臂梁特征的系统结构的磁场作用力及其计算方法, 给出了相应的磁力计算模型, 并将计算结果与实验数据进行了对比. 研究表明, 磁化电流方法导出的磁力计算模型存在偏差, 其磁力计算误差随着磁铁间距缩小而增大. 通过引入悬臂梁末端磁铁的偏转角度, 对磁化电流法计算模型进行改进, 得到合理的外加磁场压电悬臂梁能量采集系统的磁力计算模型, 为该能量采集系统的进一步研究提供了可靠的磁力计算理论依据.  相似文献   

3.
Dispersion characteristics of coupled microstrip lines on ferrimagnetic substrates are presented and their features discussed. The Hertz vector potentials in the spectral domain method are used to calculate the dyadic Green's functions in an impedance matrix form. The behavior of the propagation constants is obtained by using the spectral Galerkin's technique. Numerical results are found as a function of various geometrical parameters and of the externally applied static magnetic field. Nonreciprocal behavior is mainly observed when the static magnetic field is applied in the transverse direction, parallel to the ground plane.  相似文献   

4.
Mössbauer measurements have been made on polycrystalline barium and strontium hexaferrite samples. The subspectra corresponding to the iron ion in the bypyramid lattice site in the temperature range 4.2 to 293 K with and without externally applied magnetic field up to 25 kG have been considered particularly.The quadrupole shift is vanishing, and the five magnetic hyperfine fields related to the magnetic sites are equal at low temperature. Values of the hyperfine fields for the pentahedral site are discussed.  相似文献   

5.
This paper investigates the magnetohydrodynamic (MHD) electroosmotic flow (EOF) of Newtonian fluid through a zeta potential modulated parallel plate microchannel with patterned hydrodynamic slippage. The driven mechanism of the flow originates from the Lorentz force generated by the interaction of externally imposed lateral electric field $E_y$ and vertical magnetic field $B_z$ and electric field force produced by an externally applied electric field $E_x$. It is assumed that the wall zeta potential and the slip length are periodic functions of axial coordinate $x$, an analytical solution of the stream function is achieved by utilizing the method of separation of variables and perturbation expansion. The pictures of streamlines are plotted and the vortex configurations produced in flow field due to patterned wall potential and hydrodynamic slippage are discussed. Based on the stream function, the velocity field and volume flow rate are obtained, which are greatly depend on some dimensionless parameters, such as slip length $l_s$, electrokinetic width $\lambda$, the amplitude $\delta$ of the patterned slip length, the amplitude $m$ of the modulated zeta potential and Hartmann number $Ha$. The variations of velocity and volume flow rate with these dimensionless parameters are discussed in details. These theoretical results may provide some guidance effectively operating micropump in practical nanofluidic applications.  相似文献   

6.
The complete optical transmittance for a polarized light passing through the magnetic fluids is investigated theoretically and experimentally, when the externally magnetic field is applied along the propagation direction of the incident light. Hybrid effects due to the geometric shadowing and Faraday rotation are considered simultaneously. The Langevin-like functions are employed to describe the magnetic-field-dependent volume concentration of the particle-aggregation (φ′) and the approximate number of magnetic nanoparticles in the particle-aggregation (βN0). Based on the experiments on the geometric shadowing effect of our magnetic fluid sample, the analytical expression for the total transmitted power with externally magnetic field after an analyzer is derived. Theoretical simulations disclose the influence of certain critical parameters of the magnetic fluids on the field-dependent optical transmittance. For the entire polarized light transmittance, qualitative agreement between the calculations and the experiments is achieved. Applications of magnetic fluids to several polarized devices operating in longitudinal field arrangement are proposed and discussed. The results presented in this work may be useful for designing the corresponding magnetic-fluid-based optical devices.  相似文献   

7.
A magnetic field applied to a size-quantized system causes persistent equilibrium currents nonuniformly distributed across this system. For a quantum film and a two-dimensional strip, the distributions of the dia-and paramagnetic currents and magnetic field are determined. The possibility of observing field distribution by NMR is discussed.  相似文献   

8.
The effects of an externally applied magnetic field on the Anderson localization of electromagnetic waves in an alternating layered system of vacuum and semiconducting slabs are studied. Specifically, a waveguide formed from perfectly conducting parallel plates which contain between them an array of vacuum and n-type semiconductor slabs is examined in the presence of an external static magnetic field applied parallel to both the plates and the slab surfaces. The widths of the slabs in the array are random but with a randomness such that the array of slabs is almost periodic, and we study only electromagnetic modes which propagate perpendicular to the slab surfaces. The localization length is obtained by studying the reflection and transmission properties of a finite array of slabs in the limit that it becomes semi-infinite. Two types of system are treated: (i) a reciprocal system which exhibits a localization length that does not depend on the sign of the applied magnetic field, and (ii) a non-reciprocal system which exhibits a localization length that depends on the sign of the applied magnetic field.  相似文献   

9.
A new method for locally targeted drug delivery is proposed that employs magnetic implants placed directly in the cardiovascular system to attract injected magnetic carriers. Theoretical simulations and experimental results support the assumption that using magnetic implants in combination with externally applied magnetic field will optimize the delivery of magnetic drug to selected sites within a subject.  相似文献   

10.
A numerical study of the output power characteristics of microwave radiation from a relativistic electron beam (REB) with a virtual cathode in the presence of externally applied longitudinal magnetic field is performed. Typical dependences of the output microwave power of the relativistic vircator system on the external magnetic field strength are obtained, showing a number of local maxima. It is found that the characteristic behavior of the radiation power is determined by the conditions and mechanisms of virtual cathode formation in the presence of external longitudinal magnetic field and a self-magnetic REB field.  相似文献   

11.
Faraday rotation within a polarization non-conserving single-mode optical fiber is used for ac magnetic field measurement. For that purpose the intrinsic fiber birefringence on the path to and from the Faraday rotation section is controlled. As control devices externally applied stress birefringence and phase retarder plates were used. With respect to magnetic field measurements on high electric potentials all control devices are placed at fiber input and output only.  相似文献   

12.
Abstract

The effects of an externally applied magnetic field on the Anderson localization of electromagnetic waves in an alternating layered system of vacuum and semiconducting slabs are studied. Specifically, a waveguide formed from perfectly conducting parallel plates which contain between them an array of vacuum and n-type semiconductor slabs is examined in the presence of an external static magnetic field applied parallel to both the plates and the slab surfaces. The widths of the slabs in the array are random but with a randomness such that the array of slabs is almost periodic, and we study only electromagnetic modes which propagate perpendicular to the slab surfaces. The localization length is obtained by studying the reflection and transmission properties of a finite array of slabs in the limit that it becomes semi-infinite. Two types of system are treated: (i) a reciprocal system which exhibits a localization length that does not depend on the sign of the applied magnetic field, and (ii) a non-reciprocal system which exhibits a localization length that depends on the sign of the applied magnetic field.  相似文献   

13.
An externally applied longitudinal magnetic field was found to enhance the particle trapping in the laser wakefield acceleration. When a static magnetic field of a few tens of tesla is applied in parallel with the propagation direction of a driving laser pulse, it is shown from two-dimensional particle-in-cell simulations that total charge of the trapped beam and its maximum energy increase. The analysis of electron trajectories strongly suggests that the enhanced trapping originates from the suppression of the transverse motion by the magnetic field. The enhanced trapping by the magnetic field was observed consistently for various values of the plasma density, the amplitude of the laser pulse and pulse spot size.  相似文献   

14.
We investigate the electrical properties of the nanostructured magnetic colloid without and with magnetic field. The competition between the directional motion of the charged magnetic nanoparticles and other minor nonmagnetic impurities (also small amount of ions) under applied voltage and their random orientation due to thermal activation is implemented to elaborate the electrically conduction mechanism under zero magnetic field. Two equivalent electric circuits are employed for explaining the charging and discharging processes. The tunnelling conduction mechanism upon application of externally magnetic field may exist in the nanostructured magnetic colloid. The alternation of the two conduction mechanisms accounts for the current spikes when the magnetic field is switched on or off. This work presents the peculiar electrical phenomena of the magnetically colloidal system.  相似文献   

15.
A mathematical model for targeted drug delivery using magnetic particles is developed. This includes a diffusive flux of particles arising from interactions between erythrocytes in the microcirculation. The model is used to track particles in a vessel network. Magnetic field design is discussed and we show that it is impossible to specifically target internal regions using an externally applied field.  相似文献   

16.
刘国治  宋晓欣 《中国物理》1998,7(4):288-291
The self-magnetic-field-limiting current of intense relat ivistic electron beam (IREB) without an externally applied magnetic field is reported and briefly commented in this paper. By using dynamic balance method the self-magnetic-field-limiting current of IREB under externally applied magnetic field is derived, showing that in this case it will increase. This result is obtained for the first time, so far as we know, and will be further tested by experiment.  相似文献   

17.
Mesoscopic or macromolecular conducting rings with a fixed number of electrons are shown to support persistent currents due to the Aharonov-Bohm flux, and the “spontaneous” persistent currents without the flux when structural transformation in the ring is blocked by strong coupling to the externally azimuthal-symmetric environment. In the free-standing macromolecular ring, symmetry breaking removes the azimuthal periodicity, which is further restored at the increasing field, however. The dynamics of the Aharonov-Bohm loop in crossed electric and magnetic fields is investigated within the tight-binding approximation; we show that transitions between discrete quantum states occur when static voltage pulses of prescribed duration are applied to the loop. In particular, the three-site ring with one or three electrons is an interesting quantum system that can serve as a qubit (quantum bit of information) and a qugate (quantum logical gate) because in the presence of an externally applied static electric field perpendicular to a magnetic field, the macromolecular ring switches between degenerate ground states mimicking the NOT and Hadamard gates of quantum computers.  相似文献   

18.
The dynamical equations for the gauge-invariant superconducting phase differences across the twelve Josephson junctions placed on the sides of an inductive cubic network are derived. The electrodynamic properties of the system are studied by means of a general analytic approach. The cubic system is seen to show features similar to those of a d.c. SQUID for externally applied magnetic fields perpendicular to one cube face. Additional features are detected for different field orientations.  相似文献   

19.
The dynamical equations for the gauge-invariant superconducting phase differences across the twelve Josephson junctions placed on the sides of an inductive cubic network are derived. The electrodynamic properties of the system are studied by means of a general analytic approach. The cubic system is seen to show features similar to those of a d.c. SQUID for externally applied magnetic fields perpendicular to one cube face. Additional features are detected for different field orientations.  相似文献   

20.
D Bora  K Satyanarayana  V N Rai 《Pramana》1986,27(4):549-561
Low temperature plasma parameters in a toroidal magnetic field are measured. The effect of an externally applied perpendicular electric field on the plasma parameters is studied. The lifetime of the plasma is measured in the presence and absence of the RF electric field. Decrease in the plasma lifetime in the presence of RF field is attributed to detrapping of the primary electrons to a larger volume. Plasma lifetime increases when a small vertical magnetic field is added to the toroidal magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号