首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Growth of In0.52Al0.48As epitaxial layers on InP(100) substrates by molecular beam epitaxy at a wide range of arsenic overpressure (V/III flux ratio from 30 to 300) is carried out. Analysis performed using low-temperature photoluminescence (PL) and double-axis X-ray diffraction (XRD) showed a strong and prominent dependence of the PL and XRD linewidths on the V/III flux ratio. Under our growth conditions, both the PL and XRD linewidths exhibit a minimum point at a V/III flux ratio of 150 which corresponds to a maximum in the PL intensity and XRD intensity ratio. Flux ratios exceeding 150 results in an increase in both the PL and XRD linewidths corresponding to a reduction in their associated intensities. Room-temperature Raman scattering measurements show a narrowing in the InAs-like and AlAs-like longitudinal-optic (LO) phonon linewidths which broaden at high flux ratios, while the LO phonon frequencies exhibit a gradual reduction as the flux ratio is increased. PL spectrum taken at increasing temperature show a quenching of the main emission peak followed by the evolution of a broad lower energy emission which is possibly associated with deep-lying centres. This effect is more prominent in samples grown at lower V/III flux ratios. Hall effect measurements showed a gradual reduction in the mobility in correspondence to an increase in the electron concentration as the flux ratio is increased.  相似文献   

2.
Micro‐Raman measurements have been carried out in order to study the V/III flux ratio effect in InP/InAlAs/InP heterostructures grown by metal‐organic chemical vapor deposition (MOCVD). Photoluminescence (PL) studies in InP/InAlAs/InP heterostructures [1] , [2] show a strong dependence of the PL band linewidth on V/III molar ratio. In addition to the observation of the two‐mode behavior and the disorder activated modes in InAlAs alloy, an analysis of Raman spectra shows a line shape broadening and wavenumber shift of Raman peaks for various V/III molar ratios, with minimum linewidth and lattice mismatch occurring at V/III = 50. Also, a strong dependence on the composition modulation of the AlAs‐like longitudinal optic (LOAlAs−like) phonon was observed due to clustering. Calculation of the in‐plane strain shows that the lattice mismatch between the epilayer and the substrate is relatively insensitive to flux ratio variation within the range investigated. Therefore, the high arsenic overpressures used have an insignificant adverse effect on the quality of the hetero‐interfaces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
An experimental investigation is presented on the influence of laser excitation on the photoluminescence (PL) linewidth in InAlAs layers grown lattice matched to InP substrates by molecular beam epitaxy (MBE). Measurements performed on silicon-doped samples and samples grown at different arsenic overpressures (V/III flux ratio) showed that the linewidth decreases with increasing laser excitation power. A model describing an unbalanced migration of photo-generated charge carriers due to the presence of clusters is proposed to explain the effect of the linewidth reduction. Also, the trend of the linewidth decrease becomes more pronounced in InAlAs samples with higher silicon doping concentrations and those grown at higher V/III ratios. Samples with higher silicon-doping concentrations have broader linewidths which could be the result of poorer alloy quality due to the presence of disorder (S. F. Yoon et al., J. Appl. Phys. 78, 1812 (1995)). A similar trend of linewidth reduction was observed at temperatures as high as 30 K. Our results show that such a measurement of linewidth vs. laser excitation power can be used as a supplementary method for InAlAs material characterization.  相似文献   

4.
GaN nanowires (NWS) were synthesized at different temperatures by ammoniating Ga2O3/Co films deposited on Si (111) substrate. X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscope (HRTEM), Fourier transformed infrared spectra (FTIR) and photoluminence (PL) spectra were used to characterize the influences of the ammoniating temperature on the morphology, crystallinity and optical properties of GaN NWS. Our results indicate that the samples are all of wurtzite structure and also show that the GaN NWS ammoniated at 950 °C have the best morphology and crystallinity with a single-crystalline structure, and at this temperature the PL spectrum with the strongest ultraviolet (UV) peak is observed. PACS 61.46.-w; 71.55.Eq; 81.15.Cd; 81.07.-b; 61.10.Nz  相似文献   

5.
A series of metamorphic high electron mobility transistors (MMHEMTs) with different Ⅴ/Ⅲ flux ratios are grown on CaAs (001) substrates by molecular beam epitaxy (MBE). The samples are analysed by using atomic force microscopy (AFM), Hall measurement, and low temperature photoluminescence (PL). The optimum Ⅴ/Ⅲ ratio in a range from 15 to 60 for the growth of MMHEMTs is found to be around 40. At this ratio, the root mean square (RMS) roughness of the material is only 2.02 nm; a room-temperature mobility and a sheet electron density are obtained to be 10610.0cm^2/(V.s) and 3.26×10^12cm^-2 respectively. These results are equivalent to those obtained for the same structure grown on InP substrate. There are two peaks in the PL spectrum of the structure, corresponding to two sub-energy levels of the In0.53Ga0.47As quantum well. It is found that the photoluminescence intensities of the two peaks vary with the Ⅴ/Ⅲ ratio, for which the reasons are discussed.  相似文献   

6.
磁控溅射制备ZnO薄膜的结构及发光特性研究   总被引:2,自引:0,他引:2  
采用射频反应磁控溅射法在玻璃衬底上制备出具有c轴高择优取向的ZnO薄膜,利用X射线衍射、扫描探针显微镜及荧光分光光度法研究了生长温度对ZnO薄膜微观结构及光致发光特性的影响。结果表明,合适的衬底温度有利于提高ZnO薄膜的结晶质量;在室温下测量样品的光致发光谱(PL),观察到波长位于400 nm左右的紫光、446 nm左右的蓝色发光峰及502 nm左右微弱的绿光峰,随衬底温度升高,样品的PL谱中紫光及蓝光强度逐渐增大,同时,绿光峰的强度也表现出一定程度的增强。经分析得出紫光应是激子发光所致,而锌填隙则是引起蓝光发射的主要原因,502 nm左右的绿光峰应该是氧的深能级缺陷造成的。此外,还测量了样品的吸收谱,并结合样品吸收谱的拟合结果对光致发光机理的分析作了进一步的验证。  相似文献   

7.
GaInNAs/GaAs quantum wells grown by molecular beam epitaxy under different arsenic pressures have been studied using photoluminescence (PL), X-ray diffraction (XRD) and secondary-ion mass spectrometry (SIMS). The best optical properties are achieved with the V/III beam equivalent pressure ratio (V/IIIBEP) of 10. The PL emission wavelength remains unchanged for 8V/IIIBEP12, suggesting that within this range neither the alloy composition nor the nitrogen sticking coefficient is changed. For the lower and higher V/IIIBEP ratios the PL wavelength is red-shifted or blue-shifted, respectively. The XRD results indicate that the nitrogen incorporation into the group-V sub-lattice is enhanced at low As pressures and reduced at high As pressures. The PL behaviour can thus be understood as a competition between As and N adatoms in occupying anion lattice sites.  相似文献   

8.
Using temperature-dependent photoluminescence (PL) measurements, we report a comprehensive study on optical transitions in AlyInxGa1−xyN epilayer with target composition, x=0.01 and y=0.07 and varying epilayer thickness of 40, 65 and 100 nm. In these quaternary alloys, we have observed an anomalous PL temperature dependence such as an S-shape band-edge PL peak shift and a W-shape spectral broadening with an increase in temperature. With an increase in excitation power density, the emission peak from the AlInGaN epilayers shows a blue shift at 100 K and a substantial red shift at room temperature. This is attributed to the localization of excitons at the band-tail states at low temperature. Compared to 40 and 65 nm thick epilayers, the initial blue shift observed with low excitation power from 100 nm thick AlInGaN epilayer at room temperature is caused by the existence of deeper localized states due to confinement effects arising from higher In and Al incorporation. The subsequent red shift of the PL peak can be attributed by free motion of delocalized carriers that leads to bandgap renormalization by screening. Due to competing effects of exciton and free carrier recombination processes, such behavior of optical transitions leads to two different values of exponent ‘k’ in the fitting of PL emission intensity as a function of excitation power.  相似文献   

9.
报道了在Si基上用简便的真空反应法制备出GaN外延层.光致发光光谱测试结果表明不同的生长温度和退火工艺会对GaN外延层的发光特性产生影响,在1050℃下生长的GaN外延层的发光强度高于其他温度下生长的发光强度,退火可以使GaN外延层的发光强度增强.二次离子质谱(SIMS)测试结果表明外延层中Ga和N分布均匀,在表面处Ga发生了偏聚,同时外延层中还存在Si,O等杂质,这使得外延层中背景电子浓度高达1.7×1018/cm3. SIMS测试结果还表明,在外延生长前采用 关键词:  相似文献   

10.
Lattice-matched InGaP epilayers on GaAs (001) and InGaP/GaAs heterojunction bipolar transistors (HBTs) were successfully grown by solid-source molecular beam epitaxy (SSMBE) with a GaP decomposition source. A 3 μm thick InGaP epilayer shows that low temperature photoluminescence (PL) peak energy is as large as 1.998 eV, full width at half maximum (FWHM) is 5.26 meV, which is the smallest ever reported, and X-ray diffraction (XRD) rocking curve linewidth is as narrow as that of GaAs substrate. The electron mobilities at room temperature of nominally undoped InGaP layers obtained by Hall measurements are comparable to similar InGaP epilayer grown by solid-source molecular beam epitaxy (SSMBE) with other sources or other growth techniques. The large area InGaP/GaAs HBTs show very good Dc characteristics.  相似文献   

11.
Luminescent Gd2O2S:Tb3+ phosphor thin films were grown on Si (100) substrates, using the pulsed laser deposition technique. The films were grown in 100 to 300 mTorr oxygen gas (O2) atmospheres when the substrate temperature was kept constant at 400 or 600°C. The effect of the O2 ambient on the structure and morphological properties of the films were analyzed using x-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. Spherical nanoparticles deposited on the Si (100) substrates were shown to crystallize in the hexagonal structure of Gd2O2S. The photoluminescence (PL) spectra of all the films were characterized by a stable green emission peak with a maximum at 545 nm. Improved PL intensity was observed from the films deposited at higher oxygen pressures and higher substrate temperatures. Particles sizes of the nanoparticles deposited under the different conditions varied between 19 and 36 nm for the different samples. Smaller and more densely packet particles were produces at the higher O2 pressures and the higher temperature.  相似文献   

12.
Zn0.95Cu0.02Cr0.03O powders have been synthesized by the sol-gel method and sintered in argon atmosphere under different temperatures. The structural, optical and magnetic properties of the powders were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and vibrating sample magnetometer (VSM). The XRD results demonstrated that Cr and Cu ions are incorporated into ZnO successfully when annealing temperatures were 600 and 700 °C. But when the samples were annealed at 500 °C, the crystallinity of the samples was not very good. However, when the annealing temperature was increased to 800 °C, the secondary phase of Cu and ZnCr2O4 appeared in the samples. The PL spectra revealed that the position of the ultraviolet (UV) emission peak of the samples showed a blue shift and the green emission peak enhanced significantly with the annealing temperature increasing from 600 to 700 °C. Magnetic measurements indicated that the room temperature ferromagnetism of Zn0.95Cu0.02Cr0.03O was intrinsic in nature. In addition, the saturation magnetization (Ms) increased from 0.0078 to 0.0088 emu/g with the annealing temperature increased from 600 to 700 °C.  相似文献   

13.
The surface modifications of tungsten massive samples (0.5 mm foils) made by nitrogen ion implantation are studied by SEM, XRD, AFM, and SIMS. Nitrogen ions in the energy range of 16-30 keV with a fluence of 1 × 1018 N+ cm−2 were implanted in tungsten samples for 1600 s at different temperatures. XRD patterns clearly showed WN2 (0 1 8) (rhombohedral) very close to W (2 0 0) line. Crystallite sizes (coherently diffracting domains) obtained from WN2 (0 1 8) line, showed an increase with substrate temperature. AFM images showed the formation of grains on W samples, which grew in size with temperature. Similar morphological changes to that has been observed for thin films by increasing substrate temperature (i.e., structure zone model (SZM)), is obtained. The surface roughness variation with temperature generally showed a decrease with increasing temperature. The density of implanted nitrogen ions and the depth of nitrogen ion implantation in W studied by SIMS showed a minimum for N+ density as well as a minimum for penetration depth of N+ ions in W at certain temperatures, which are both consistent with XRD results (i.e., IW (2 0 0)/IW (2 1 1)) for W (bcc). Hence, showing a correlation between XRD and SIMS results.  相似文献   

14.
The surface modifications of Mo massive samples (0.5 mm foils) made by nitrogen ion implantation are studied by SEM, XRD, AFM, and SIMS. Nitrogen ions in the energy range of 16-30 keV with a fluence of 1 × 1018 N+ cm−2 were implanted in molybdenum samples for 1600 s at different temperatures. XRD patterns clearly showed MoN (0 3 1) (hcp) very close to Mo (2 0 0) line. Crystallite sizes (coherently diffracting domains) obtained from MoN (0 3 1) line, showed an increase with substrate temperature. AFM images showed the formation of grains on Mo samples, which grew in size with temperature. Similar morphological changes to that has been observed for thin films by increasing substrate temperature (i.e., structure zone model (SZM)), is obtained. The density of implanted nitrogen ions and the depth of nitrogen ion implantation in Mo studied by SIMS showed a minimum for N+ density as well as a minimum for penetration depth of N+ ions in Mo at certain temperatures, which are both consistent with XRD results (i.e., IMo (2 0 0)/IMo (2 1 1)) for Mo (bcc). Hence, showing a correlation between XRD and SIMS results. This phenomenon is explained on the basis of residual gas, substrate temperature, dissociation of water in the chamber and the ion energy.  相似文献   

15.
We report results from optical spectroscopy such as photoluminescence (PL) and time resolved photo-luminescence (TRPL) techniques from different well width MOCVD grown GaN/Al0.07Ga0.93N MQW samples. There is evidence of localization at low temperature in all samples. The decay time of all samples becomes non-exponential when the detection energy is increased with respect to the peak of the emission. Localization of carriers (excitons) is demonstrated by the “S-shape” dependences of the PL peak energies on the temperature. The time-resolved PL spectra of the 3-nm well multi quantum wells reveal that the spectral peak position shifts toward lower energies as the decay time increases and becomes red-shifted at longer decay times. There is a gradient in the PL decay time across the emission peak profile, so that the PL process at low temperatures is a free electron-localized hole transition.  相似文献   

16.
Zn1−xCoxO thin films with c-axis preferred orientation were deposited on sapphire (0 0 0 1) by pulsed laser deposition (PLD) technique at different substrate temperatures in an oxygen-deficient ambient. The effect of substrate temperature on the microstructure, morphology and the optical properties of the Zn1−xCoxO thin films was studied by means of X-ray diffraction (XRD), atomic force microscopy (AFM), UV-visible-NIR spectrophotometer, fluorescence spectrophotometer. The results showed that the crystallization of the films was promoted as substrate temperature rose. The structure of the samples was not distorted by the Co incorporating into ZnO lattice. The surface roughness of all samples decreased as substrate temperature increased. The Co concentration in the film was higher than in the target. Emission peak near band edge emission of ZnO from the PL spectra of the all samples was quenched because the dopant complexes acted as non-radiative centers. While three emission bands located at 409 nm (3.03 eV), 496 nm (2.5 eV) and 513 nm (2.4 eV) were, respectively, observed from the PL spectra of the four samples. The three emission bands were in relation to Zn interstitials, Zn vacancies and the complex of VO and Zni (VOZni). The quantity of the Zn interstitials maintained invariable basically, while the quantity of the VOZni slightly decreased as substrate temperature increased.  相似文献   

17.
The ground state absorption (GSA), photoluminescence (PL) and photoluminescence excitation (PLE) spectra for Er(1.0 at%):YAP and Er(0.5 at%):LSO were measured at room temperature. Based on the GSA spectra, the radiative transition rates and luminescence branch ratios of erbium ions were determined by the Judd-Ofelt (J-O) method. In the range of 1400-1700 nm Er(1.0 at%):YAP has intense absorption at 1509 nm (0.96×10−20 cm2), which is almost two times larger than the peak absorption of Er(0.5 at%):LSO. From the PL and PLE spectra, four intense emission bands around 850 nm (4S3/24I13/2), 980 nm (4I11/24I15/2), 1230 nm (4S3/24I11/2) and 1520 nm (4I13/24I15/2) were observed. The stimulated emission cross-sections of the four bands were calculated by the Fuchtbauer-Ladenberg (F-L) equation. The results suggest that Er(1.0 at%):YAP has potential to realize laser oscillation at 858 nm because of the relatively large simulated emission cross-section (1.76×10−20 cm2). The temperature dependences of the PL spectra for the two crystals were also investigated in the range of 290-12 K. The ∼1520 nm emission presents continuous increase with temperature, while the emissions around 850, 1230 and 980 nm firstly increase with temperature, then reach their own largest values at the transition temperatures (about 100 K), and finally decrease with temperature. These results were well interpreted by the temperature dependence of multi-phonon process.  相似文献   

18.
Nanocrystalline Ag-doped indium oxide (AIO) thin films, by employing a much simplified spray pyrolysis technique in different substrate temperatures (300, 350, 400 and 450°C), were fabricated for the first time. The deposited films were subjected to various characterization studies, to explore certain features like the influence of various deposition temperatures on physical and antibacterial properties. XRD results showed that all the samples exhibited preferential orientation along the (2 2 2) plane. The variation in the crystalline size with increasing substrate temperature was explained on the basis of the Zener pinning effect. The electrical sheet resistance (R sh) was found to decrease sharply with increasing substrate temperature and attained a minimum value \((62{\Omega } /\Box \)) at 400°C and then started increasing for higher deposition temperatures. Further, PL emission spectra of the samples in the visible range ascertained the possibility of applicability of the same in nanoscale optoelectronic devices. From the studies, it was found that at 400°C deposition temperature, one could expect better antibacterial efficiency against Escherichia coli. The influence of the shape and size of AIO nanograins on the antibacterial activity was analysed using scanning electron microscopy images.  相似文献   

19.
We report on an n-ZnO/p-GaN heterojunction diode fabricated from zinc oxide (ZnO) films at various growth temperatures (450, 500, 550, and 600 °C) by RF sputtering. The films were subsequently annealed at 700 °C in N2 ambient. To investigate the influence of the growth temperature of n-ZnO films, the microstructural, optical, and electrical properties were measured using scanning electron microscopy (SEM), X-ray diffraction (XRD), photoluminescence (PL), and Hall measurements. The XRD pattern showed the preferred orientation along the c-axis (002) regardless of growth temperature. The PL spectra showed a dominant sharp near-band-edge (NBE) emission. Current–voltage (IV) curves showed excellent rectification behavior. The turn-on voltage of the diode was observed to be 3.2 V for the films produced at 500 °C. The ideality factor of ZnO film was observed to be 1.37, which showed the best performance of the diode.  相似文献   

20.
A typical porous structure with pores diameters ranging from 10 to 50 nm has been obtained by electrochemical etching of (1 0 0) heavily doped p-type GaAs substrate in HF solution. Room temperature photoluminescence (PL) investigations of the porous GaAs (π-GaAs) reveal the presence of two PL bands, I1 and I2, located at 1.403 and 1.877 eV, respectively. After GaAs capping, the I1 and I2 PL bands exhibit opposite shift trends. However, the emission efficiency of these two bands is not strongly modified. Low temperature PL of capped porous GaAs versus injection levels shows that the I1 PL band exhibits a red shift while the I2 PL band exhibits a blue shift with increasing injection levels. The I2 PL band intensity temperature dependence shows an anomalous behaviour and its energy location shows a blue shift as temperature increases. The observed PL bands act independently and are attributed to electron – hole recombination in porous GaAs and to the well-known quantum confinement effects in GaAs nanocrystallites. The I2 PL band excitation power and temperature dependencies were explained by the filling effect of GaAs nanocrystallites energy states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号