共查询到20条相似文献,搜索用时 0 毫秒
1.
Complexes of copper (II) ions and uracil were studied using tandem mass spectrometry (Fourier transform ion cyclotron resonance, FTICR, mass spectrometry) including extensive isotopic labeling as well as theoretical calculations. Positive ion electrospray mass spectra of aqueous solutions of CuCl(2) and uracil show that the [Cu(Ura-H)(Ura)](+) ion is the most abundant ion even at low concentrations of uracil. Sustained off-resonance irradiation collision-induced dissociation (SORI-CID) experiments show that the lowest energy decomposition pathway for [Cu(Ura-H)(Ura)](+) , surprisingly, is not the loss of uracil, but the loss of HNCO followed by HCN as the most abundant secondary fragmentation product. MS(n) studies identified primary, secondary and tertiary fragmentation products. Extensive isotopic labeling studies, as well as computational studies allowed for a detailed fragmentation scheme for the [Cu(Ura-H)(Ura)](+) ion, beginning with the lowest energy structure. 相似文献
2.
3.
An Isotope‐Coded Fluorogenic Cross‐Linker for High‐Performance Target Identification Based on Photoaffinity Labeling
下载免费PDF全文

Dr. Takenori Tomohiro Shota Morimoto Toshiya Shima Dr. Junya Chiba Dr. Yasumaru Hatanaka 《Angewandte Chemie (International ed. in English)》2014,53(49):13502-13505
A photoaffinity labeling (PAL)‐based method for the rapid identification of target proteins is presented in which a high‐performance chemical tag, an isotope‐coded fluorescent tag (IsoFT), can be attached to the interacting site by irradiation. Labeled peptides can be easily distinguished among numerous proteolytic digests by sequential detection with highly sensitive fluorescence spectroscopy and mass spectrometry. Subsequent MS/MS analysis provides amino acid sequence information with a higher depth of coverage. The combination of PAL and heterogeneous target‐selecting techniques significantly reduces the amount of time and protein required for identification. An additional photocleavable moiety successfully accelerated proteomic analysis using cell lysate. This method is a widely applicable approach for the rapid and accurate identification of interacting proteins. 相似文献
4.
运用量子化学方法辅助解析并比较槲皮素与桑色素在电喷雾离子阱质谱(ESI-MS)负离子模式下的裂解行为。依据密度泛函理论(Densityfunctionaltheory,DFT),在B3LYP/6-31G(d)水平,对槲皮素与桑色素的分子空间构型进行优化,确定稳定的几何构型与去质子化位点,在RB3LYP/6-31+G(2d,2p)水平,计算相对碎裂电压下的二级质谱中碎片离子处于稳定状态时的能量,通过比较准分子离子稳定构型并结合基组重叠误差(Basissetsuperpositionerror,BSSE)校正后的键解离能(Bonddissociationenergy,BDE),推导了质谱碎裂过程。结果显示:槲皮素的稳定构型为A,B,C环处于同一平面,桑色素上的2′-OH使得B环与AC环之间翻转一定角度,二面角D(1,2,1′,6′)为-134.6624°。槲皮素与桑色素的质谱裂解过程主要通过C环跨环裂解产生,且具有多种开裂方式,开裂先后顺序为:1,2开裂、0,2开裂、1,3开裂、1,4开裂与0,4开裂,分别生成碎片离子1,2A-,0,2A-,1,3A-,1,4A-与0,4A-,并逐步进行后续裂解,而2′-OH的存在促进了桑色素的裂解。该研究为进一步揭示黄酮醇类化合物的质谱裂解规律提供了理论依据。 相似文献
5.
6.
Romina Schnegotzki Jeroen Koopman Prof. Dr. Stefan Grimme Prof. Dr. Roderich D. Süssmuth 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(27):e202200318
In organic mass spectrometry, fragment ions provide important information on the analyte as a central part of its structure elucidation. With increasing molecular size and possible protonation sites, the potential energy surface (PES) of the analyte can become very complex, which results in a large number of possible fragmentation patterns. Quantum chemical (QC) calculations can help here, enabling the fast calculation of the PES and thus enhancing the mass spectrometry-based structure elucidation processes. In this work, the previously unknown fragmentation pathways of the two drug molecules Nateglinide (45 atoms) and Zopiclone (51 atoms) were investigated using a combination of generic formalisms and calculations conducted with the Quantum Chemical Mass Spectrometry (QCxMS) program. The computations of the de novo fragment spectra were conducted with the semi-empirical GFNn-xTB (n=1, 2) methods and compared against Orbitrap measured electrospray ionization (ESI) spectra in positive ion mode. It was found that the unbiased QC calculations are particularly suitable to predict non-evident fragment ion structures, sometimes contrasting the accepted generic formulation of fragment ion structures from electron migration rules, where the “true” ion fragment structures are approximated. For the first time, all fragment and intermediate structures of these large-sized molecules could be elucidated completely and routinely using this merger of methods, finding new undocumented mechanisms, that are not considered in common rules published so far. Given the importance of ESI for medicinal chemistry, pharmacokinetics, and metabolomics, this approach can significantly enhance the mass spectrometry-based structure elucidation processes and contribute to the understanding of previously unknown fragmentation pathways. 相似文献
7.
P Liuni A Jeganathan DJ Wilson 《Angewandte Chemie (International ed. in English)》2012,51(38):9666-9669
Intensified searching: In enzymes, conformational dynamics are linked to the catalytic reaction coordinate. A novel analytical approach was used to monitor catalysis-linked dynamics in chymotrypsin, revealing that in some enzymes, catalysis is promoted by intensified, but undirected conformational sampling after substrate binding. 相似文献
8.
M. Chem. Caterina Brandmayr Dipl.‐Chem. Mirko Wagner Dr. Tobias Brückl Dr. Daniel Globisch Dr. David Pearson M. Sc. Andrea Christa Kneuttinger Dipl.‐Chem. Veronika Reiter Dr. Antje Hienzsch Dipl.‐Biol. Susanne Koch M. Sc. Ines Thoma Dipl.‐Chem. Peter Thumbs Dr. Stylianos Michalakis Dr. Markus Müller Prof. Dr. Martin Biel Prof. Dr. Thomas Carell 《Angewandte Chemie (International ed. in English)》2012,51(44):11162-11165
9.
Often phosphorylation or sulfation is an important step which occurs in the signal transduction and cascade of metabolic pathways. Some natural products and metabolites contain one or more sulfate or phosphate groups. Isoflavone sulfate has been identified from high-resolution mass spectrometry (HRMS) and enzymatic digestion by sulfatase. We previously reported the new water-soluble isoflavone analogs, daidzein 7-O-phosphate and genistein 7-O-phosphate, which were surprisingly hydrolyzed by sulfatase. In this previous study, we could not determine the phosphate from the results of HRMS and enzymatic digestion, that is, HRMS and enzymatic digestion did not provide clear evidence. In this case, we drew conclusions from NMR analysis. HRMS has been ineffective with a regular fast atom bombardment (FAB) mass spectrometer to distinguish between phosphate and sulfate since the mass difference is only 0.009 mass units. There was, however, no conventional method of microanalysis to distinguish phosphate from sulfate owing to the same nominal mass. It is still very difficult to determine by negative FABMS [--O--P(==O)(OH)(2)] = 80 and [--O--S(==O)(2)OH] = 80. In this paper, we report a method to distinguish between these groups by using a popular low-resolution mass instrument; thus, phosphate and sulfate were measured by H/D exchange mass spectrometry at the picomole level to differentiate [--O--P(==O)(OD)(2)] = 82 and [--O--S(==O)(2)OD] = 81, respectively. This method is applicable not only to the isoflavone, but also to other phospho and sulfo compounds. 相似文献
10.
11.
12.
Max Kronenwerth Kenan A. J. Bozhüyük Dr. Astrid S. Kahnt Prof. Dr. Dieter Steinhilber Dr. Sophie Gaudriault Marcel Kaiser Prof. Dr. Helge B. Bode 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(52):17478-17487
Six new lipodepsipeptides and an additional linear derivative named taxlllaids A–G ( 1 – 7 ) have been identified in the entomopathogenic bacterium Xenorhabdus indica. The structures of the main compounds have been solved by detailed NMR spectroscopic analysis and the structures of minor derivatives were elucidated by a combination of labelling experiments and detailed MS experiments. The absolute configuration of the taxlllaids was deduced by using the advanced Marfey method and analysis of the biosynthesis gene cluster showing the presence of epimerisation domains, which was subsequently proved to be correct by solid‐phase peptide synthesis of all taxlllaids. The exchange of a single amino acid in the adenylation domain was shown to be responsible for substrate promiscuity of the third A domain, resulting in the incorporation of leucine, phenylalanine or tyrosine. Bioactivity testing revealed the taxlllaids to be weakly active against Plasmodium falciparum and against a number of eukaryotic cell lines. 相似文献
13.
In vitro drug metabolism study is an integral part of drug discovery process. In this report, we have described the application of LTQ-Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high resolution (HR)-LC/MS for structural characterization of in vitro rat liver microsomal metabolites of antihistamine desloratadine. Five metabolites M1--M5 have been identified, including three hydroxylated metabolites M1--M3, one N-oxide M4 and one uncommon aromatized N-oxide M5. Accurate mass data have been obtained in both full scan and MSn mode support assignments of metabolite structures with reported mass errors less than 3 ppm. Online H/D exchange HR-LC/MS experiments provide additional evidence in differentiating hydroxylated metabolites from N-oxides. This study demonstrates the effectiveness of this approach in structural characterization of drug metabolites. 相似文献
14.
Ingrid C. Vreja Selda Kabatas Dr. Sinem K. Saka Katharina Kröhnert Dr. Carmen Höschen Dr. Felipe Opazo Prof. Dr. Ulf Diederichsen Prof. Dr. Silvio O. Rizzoli 《Angewandte Chemie (International ed. in English)》2015,54(19):5784-5788
Secondary ion mass spectrometry (SIMS) is generally used in imaging the isotopic composition of various materials. It is becoming increasingly popular in biology, especially for investigations of cellular metabolism. However, individual proteins are difficult to identify in SIMS, which limits the ability of this technology to study individual compartments or protein complexes. We present a method for specific protein isotopic and fluorescence labeling (SPILL), based on a novel click reaction with isotopic probes. Using this method, we added 19F‐enriched labels to different proteins, and visualized them by NanoSIMS and fluorescence microscopy. The 19F signal allowed the precise visualization of the protein of interest, with minimal background, and enabled correlative studies of protein distribution and cellular metabolism or composition. SPILL can be applied to biological systems suitable for click chemistry, which include most cell‐culture systems, as well as small model organisms. 相似文献
15.
采用电喷雾离子阱质谱(ESI-IT-MSn),研究了橘霉素衍生物正离子模式下的裂解行为,并结合密度泛函理论(DFT)证明裂解途径的可靠性,为同类化合物的准确鉴定提供实验和理论基础。核磁共振仪对海莲内生真菌代谢产物分离得到的橘霉素衍生物结构进行确认,电喷雾离子阱质谱正离子模式扫描,测定化合物氢氘交换产物多级裂解质谱图,并结合键断裂能和Mulliken电荷分布,进一步验证裂解规律。实验结果表明,分子结构中-COOH和CH3COO-在一级裂解过程中易脱除CO2和COCH2,CID-MS2观测到丢失H2O/HDO、H2O和-CH3或CHCO/CDCO的碎片离子峰,且丰度依次降低,理论计算也证明,这些碎片离子的总能量依次增大,稳定性降低,键断裂能逐渐增大。该结果丰富了橘霉素衍生物的电喷雾质谱裂解规律,有助于橘霉素衍生物结构的准确鉴定,为该类化合物的检测和痕量分析提供了更多支持。 相似文献
16.
During the development of isotope dilution-liquid chromatography/mass spectrometry (ID-LC/MS) for tocopherol analysis in infant formula, biased measurement results were observed when deuterium-labeled tocopherols were used as internal standards. It turned out that the biases came from intermolecular H/D exchange and intramolecular H/D scrambling of internal standards in sample preparation processes. Degrees of H/D exchange and scrambling showed considerable dependence on sample matrix. Standard addition-isotope dilution mass spectrometry (SA-IDMS) based on LC/MS was developed in this study to overcome the shortcomings of using deuterium-labeled internal standards while the inherent advantage of isotope dilution techniques is utilized for the accurate recovery correction in sample preparation processes. Details of experimental scheme, calculation equation, and uncertainty evaluation scheme are described in this article. The proposed SA-IDMS method was applied to several infant formula samples to test its validity. The method was proven to have a higher-order metrological quality with providing very accurate and precise measurement results. 相似文献
17.
Tian Liu Fuying Du Yakun Wan Fanping Zhu Jie Xing 《Journal of mass spectrometry : JMS》2011,46(8):725-733
Artemisinin drugs have become the first‐line antimalarials in areas of multi‐drug resistance. However, monotherapy with artemisinin drugs results in comparatively high recrudescence rates. Autoinduction of CYP‐mediated metabolism, resulting in reduced exposure, has been supposed to be the underlying mechanism. To better understand the autoinduction of artemisinin drugs, we evaluated the biotransformation of artemisinin, also known as Qing‐hao‐su (QHS), and its active derivative dihydroartemisinin (DHA) in vitro and in vivo, using LTQ‐Orbitrap hybrid mass spectrometer in conjunction with online hydrogen (H)/deuterium (D) exchange high‐resolution (HR)‐LC/MS (mass spectrometry) for rapid structural characterization. The LC separation was improved allowing the separation of QHS parent drugs and their metabolites from their diastereomers. Thirteen phase I metabolites of QHS have been identified in liver microsomal incubates, rat urine, bile and plasma, including six deoxyhydroxylated metabolites, five hydroxylated metabolites, one dihydroxylated metabolite and deoxyartemisinin. Twelve phase II metabolites of QHS were detected in rat bile, urine and plasma. DHA underwent similar metabolic pathways, and 13 phase I metabolites and 3 phase II metabolites were detected. Accurate mass data were obtained in both full‐scan and MS/MS mode to support assignments of metabolite structures. Online H/D exchange LC‐HR/MS experiments provided additional evidence in differentiating deoxydihydroxylated metabolites from mono‐hydroxylated metabolites. The results showed that the main phase I metabolites of artemisinin drugs are hydroxylated and deoxyl products, and they will undergo subsequent phase II glucuronidation processes. This study also demonstrated the effectiveness of online H/D exchange LC‐HR/MSn technique in rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
Ramona Abbattista Ilario Losito Cristina De Ceglie Graziana Basile Cosima D. Calvano Francesco Palmisano Tommaso R.I. Cataldi 《Journal of mass spectrometry : JMS》2019,54(10):843-855
A systematic structural characterization of the isomeric forms related to ligstroside aglycone (LA), one of the most relevant secoiridoids contained in virgin olive oils, was performed using reverse phase liquid chromatography with electrospray ionization Fourier‐transform single and tandem mass spectrometry, operated in negative ion mode (RPLC‐ESI(?)‐FTMS and FTMS/MS). The high mass resolution and accuracy provided by the adopted orbital trap mass analyzer enabled the recognition of more than 10 different isomeric forms of LA in virgin olive oil extracts. They were related to four different types of molecular structure, two of which including a dihydropyranic ring bearing one or two aldehydic groups, whereas the others corresponded to dialdehydic open‐structure forms, differing just for the position of a C═C bond. The contemporary presence of enolic or dienolic tautomers associated to most of these compounds, stable at room temperature (23°C), was also assessed through RPLC‐ESI‐FTMS analyses operated under H/D exchange conditions, ie, by using D2O instead of H2O as co‐solvent of acetonitrile in the RPLC mobile phase. As discussed in the paper, the results obtained for LA indicated a remarkable structural similarity with oleuropein aglycone (OA), the most abundant secoiridoid of olive oil, whose isoforms had been previously characterized using the same analytical approach. 相似文献
19.
Federico Bonaldo Fulvio Mattivi Daniele Catorci Panagiotis Arapitsas Graziano Guella 《Molecules (Basel, Switzerland)》2021,26(12)
Several classes of flavonoids, such as anthocyanins, flavonols, flavanols, and flavones, undergo a slow H/D exchange on aromatic ring A, leading to full deuteration at positions C(6) and C(8). Within the flavanol class, H-C(6) and H-C(8) of catechin and epicatechin are slowly exchanged in D2O to the corresponding deuterated analogues. Even quercetin, a relevant flavonol representative, shows the same behaviour in a D2O/DMSOd6 1:1 solution. Detailed kinetic measurements of these H/D exchange processes are here reported by exploiting the time-dependent changes of their peak areas in the 1H-NMR spectra taken at different temperatures. A unifying reaction mechanism is also proposed based on our detailed kinetic observations, even taking into account pH and solvent effects. Molecular modelling and QM calculations were also carried out to shed more light on several molecular details of the proposed mechanism. 相似文献
20.