首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Rapid, simple, and sensitive submicellar liquid chromatography with fluorescence detection was developed and validated to quantify naproxen in plasma and brain samples after oral administration of Naproxen formulations. The method used tramadol as an internal standard. Different submicellar mobile phases with organic phases ranging from 40 to 60% were studied to improve the native fluorescence of the Naproxen and decrease retention times. Separation was done in a Zorbax SB C8 column (250 × 4.6 mm, 5 μm) with a mobile phase containing acidic 0.007 M sodium dodecyl sulfate/acetonitrile (50:50, v/v) at a flow rate of 1 mL/min. Detection was performed with an excitation wavelength of 280 nm and emission of 310 nm and 360 nm for internal standard and Naproxen, respectively. The method was validated by International Conference of Harmonization standards. The method is specific, accurate, and precise (relative standard deviation <3%). Limits of detection and quantification were 0.08 and 0.25 μg/mL, respectively, for biological samples. This method was applied to analyze brain/plasma ratios in mice that had received oral administrations of Naproxen micellar formulations containing 10% w/w of sodium dodecyl sulfate, Cremophor RH 40, or Tween 80. The sodium dodecyl sulfate micelles were faster and more widely distributed in the mouse brains.  相似文献   

2.
To detect and quantify synephrine in feed, an effective analytical method based on quick, easy, cheap, effective, rugged, and safe solid‐phase extraction coupled to ultra high performance liquid chromatography with tandem mass spectrometry was developed with isotopic internal standards. Pretreatment was performed using quick, easy, cheap, effective, rugged, and safe solid‐phase extraction with primary secondary amine and C18 sorbent as sorbents in combination with Oasis MCX column clean‐up to extract and purify feed samples. Tandem mass spectrometry detection in positive ion mode was conducted in positive multiple reaction monitoring mode in addition to the quantitative internal standard method. Two transitions of synephrine at m/z 168.1/150.0 and 168.1/135.0 were selected, and m/z 168.1/135.0 was determined as the quantification ion pair. D9‐Terbutaline was selected as an internal standard, for which m/z 235.1/153.0 was selected as the quantification ion pair. Good linearity was shown for synephrine in the range of 0.5–50 μg/L, and the correlation coefficient exceeded 0.999. The recoveries in three different feed samples at three spiked levels were 81.42–112.08%, and the relative standard deviations were not greater than 14.66%. The method proposed in this study was reliable and highly effective, and its sensitivity, accuracy, and precision are suitable for determining synephrine residues in feed samples.  相似文献   

3.
Pyridinoline and deoxypyridinoline crosslinks are biomarkers found in urine for collagen degradation in bone turnover. For the first time, a rapid, sensitive, and ion‐pairing free method is described for the analysis of pyridinoline and deoxypyridinoline using ultra‐high performance liquid chromatography with Cogent Diamond Hydride column and detection by Q Exactive hybrid quadrupole‐orbitrap high resolution accurate mass spectrometry. The separation was achieved using both isocratic and gradient conditions and run time <5 min under isocratic conditions of 20% acetonitrile in water containing 0.1% formic acid. Pyridoxine was used as an internal standard and relative standard deviation of the retention times of both pyridinoline and deoxypyridinoline were <1%. The limit of detection was 0.082 ± 0.023 μM for pyridinoline and 0.118 ± 0.052 μM for deoxypyridinoline. The limit of quantitation was 0.245 ± 0.070 μM for pyridinoline and 0.354 ± 0.157 μM for deoxypyridinoline. The method was validated by the detection and quantitation of both pyridinoline and deoxypyridinoline in skin and urine samples.  相似文献   

4.
The extended use of protein drugs in therapeutics has created the need for their quantification in human plasma. A methodology using the therapeutic protein itself as internal standard for quantitative analysis by multiple reaction monitoring (MRM) has been designed and applied to epoetin beta, a recombinant human erythropoietin (rhEPO). After depletion of major proteins, plasma samples were desalted and enriched in rhEPO by reversed phase liquid chromatography prior to tryptic cleavage. Differential isotopic labeling of peptides was performed by derivatization with 2-methoxy-4,5-dehydro-imidazole. A light version (four hydrogen atoms) of this reagent was used for plasma peptides. Tryptic peptides obtained from pure rhEPO were derivatized with a heavy version (four deuterium atoms) of the same reagent and used as internal standards. Two rhEPO tryptic peptides with three MRM transitions per peptide were selected for quantification. This strategy provided a quantification limit close to 50 amol of epoetin beta per microliter of plasma (equivalent to 1.7 ng/mL), i.e., well below the expected therapeutic concentrations in plasma (around 100–500 amol/μL).  相似文献   

5.
A methodology for monitoring low level of caffeine in aqueous samples via gas chromatography coupled with an ion-trap tandem mass spectrometry detection system (IT-MS/MS) was developed. Four IT-MS/MS operating parameters, including the collision-induced dissociation (CID) voltage, the excitation time (ET), the isolation time (IT) and the maximum ionization time (MIT) were optimized in order to maximize the sensitivity of the IT-MS/MS technique towards the analyte and its isotope-labeled standard. After optimization, a limit of detection of 500 fg μl−1 with S/N = 3 was achieved. Taking into account blank values and the matrix background, a method detection limit of 1.0–2.0 ng l−1 was derived and applied to all of the samples analyzed in the study. Various mass spectrometric conditions have been applied to caffeine and its trimethyl-13C-labeled standard to elucidate fragmentation pathways for new and commonly occurring product ions observed in the collision-induced dissociation (CID) spectra produced by the ion trap. Ion structures and fragmentation pathway mechanisms have been proposed and compared with previously published data. An isotope dilution method using 13C-labeled caffeine as a surrogate internal standard was employed to determine and correct the recovery of native caffeine in water samples. The developed methodology has been applied for the determination of caffeine in surface marine and freshwater samples collected on the west coast of Vancouver Island in British Columbia, Canada. The results obtained for the marine water samples indicated a wide variation in the level of caffeine, ranging from 4.5 to 149 ng l−1, depending on the location of the sampling site within the inlet. The concentrations of caffeine in samples from lakes associated with various residential densities ranged from ND to 6.5, 1.8 to 10.4 and 6.1 to 21.7 ng l−1 for low, moderate and high residential densities, respectively.  相似文献   

6.
A robust method for the quantitation of epigallocatechin gallate peracetate in plasma for pharmacokinetic studies is lacking. We have developed a validated method to quantify this compound using liquid chromatography with quadrupole time‐of‐flight mass spectrometry with isopropanol and tert‐butyl methyl ether (3:10) extraction and thin‐layer chromatography purification. The epigallocatechin gallate peracetate‐1‐13C8 isotope was used as an internal standard. The linear range (r2 > 0.9950) was from 0.05 to 100.00 μg/mL. The lower limit of quantification of the method was 0.05 μg/mL. Reproducibility, coefficient of variation, was between 0.7 and 12.6% (n = 6), accuracy between 83.7 and 104.6% (n = 5), and recovery ranged from 82.4 to 109.0% (n = 4). Ion suppression was approximately 40%. No mass spectral peaks were found to interfere between the standard and internal standard or the blank plasma extracts. Epigallocatechin gallate peracetate in plasma was stably stored at –80°C over three months even after three freeze–thaw cycles. Extracts were stable in the sampler at 4°C for over 48 h. Plasma levels were maintained at 1.36 μg/mL for 360 min after intraorbital intravenous injection at 50 mg/kg in mice. This method can be used to reliably measure epigallocatechin gallate peracetate in plasma for pharmacokinetic studies.  相似文献   

7.
A reliable method for structural analysis is crucial for the forensic investigation of new psychoactive substances (NPSs). Towards this end, mass spectrometry is one of the most efficient and facile methods for the identification of NPSs. However, the differentiation among 2‐, 3‐, and 4‐fluoromethcathinones (o‐, m‐, and p‐FMCs), which are ring‐fluorinated positional isomers part of the major class of NPSs referred to as synthetic cathinones, remains a challenge. This is mostly due to their similar retention properties and nearly identical full scan mass spectra, which hinder their identification. In this study, we describe a novel and practical method for differentiating the fluorine substitution position on the phenyl ring of FMCs, based on energy‐resolved mass spectrometry (ERMS) using an electron ionization‐triple quadrupole mass spectrometer. ERMS measurements showed that the three FMC positional isomers exhibited differences in relative abundances of both the fluorophenyl cation (m/z 95) and the fluorobenzoyl cation (m/z 123). The logarithmic plots of the abundance ratio of these two cations (m/z 95 to m/z 123) as a function of the collision energy (CE) followed the order of o‐FMC < p‐FMC < m‐FMC at each CE, which allowed the three isomers to be unambiguously and reliably differentiated. The theoretical dissociation energy calculations confirmed the relationship obtained by ERMS analyses, and additional ERMS measurements of methylmethcathinone positional isomers showed that the differences in abundance among the FMCs were attributed to the differences in their collision‐induced dissociation reactivities arising from the halogen‐induced resonance effects on the phenyl ring. Moreover, the method for differentiation described herein was successfully applied to the actual samples containing seized drugs. We expect that the described methodology will also contribute significantly to the reliable and accurate structural identification of NPSs in the fields of therapeutic, clinical, and forensic toxicology.  相似文献   

8.
A label-free absolute quantitation method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been developed. This methodology was applied to mouse heart in order to quantify cardiac troponin T (cTnT), which is considered to be a sensitive marker of heart damage. The cTnT was extracted, isolated by reversed-phase high-performance liquid chromatography, digested, and analyzed by MALDI-TOF MS. The MS-based quantitation was performed using matrix-matched calibration curves (due to a matrix effect) of two synthetic peptides, one cTnT-specific peptide and one internal standard peptide, respectively. Recoveries at three spiking levels ranged from 87–96%, with relative standard deviations of below 10%. The method detection limit and the method quantitation limit, expressed as the amount of cTnT for the amount of total sarcomeric protein extract, were 0.03 mg g−1 and 0.15 mg g−1, respectively. This method appears to be accurate and generally suitable for improving absolute protein quantitation.  相似文献   

9.
A sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, followed by a 96-well protein precipitation, has been developed and fully validated for the determination of Phakellistatin 13 (PK13), a new cyclic heptapeptide isolated from the sponge Phakellia fusca Thiele, in rat plasma. After protein precipitation of the plasma samples (50 μL) in a 96-well plate by methanol (200 μL) containing the internal standard Pseudostellarin B (20 ng/mL), the plate was vortex mixed for 3 min. Following filtration for 5 min, the filtrate was directly injected into the LC-MS/MS system. The analytes were separated on an XB-C18 analytical column (5 μm, 50 mm × 4.6 mm i.d.) using an eluent of methanol–water (85:15, v/v) and detected by electrospray ionization mass spectrometry in the negative multiple reaction monitoring mode with a chromatographic run time of 5.0 min. The method was sensitive with a lower limit of quantification (LLOQ) of 0.1 ng/mL, with good linearity (r > 0.999) over the quantitation range of 0.1–5 ng/mL. The validation results demonstrated that this method was significantly specific, accurate, precise, and was successfully applied in measuring levels of PK13 in rat plasma following intravenous administration of 20, 50, and 100 μg/kg of peptide in rats, respectively, which was suitable for the preclinical pharmacokinetic studies on PK13.  相似文献   

10.
During routine liquid chromatography/tandem mass spectrometric (LC/MS/MS) bioanalysis of a small molecule analyte in rat serum samples from a toxicokinetic study, an unexpected interfering peak was observed in the extracted ion chromatogram of the internal standard. No interfering peaks were observed in the extracted ion chromatogram of the analyte. The dose‐dependent peak area response and peak area response versus time profiles of the interfering peak suggested that it might have been related to a metabolite of the dosed compound. Further investigation using high‐resolution mass spectrometry led to unequivocal identification of the interfering peak as an N‐desmethyl metabolite of the parent analyte. High‐resolution mass spectrometry (HRMS) was also used to demonstrate that the interfering response of the metabolite in the multiple reaction monitoring (MRM) channel of the internal standard was due to an isobaric relationship between the 13C‐isotope of the metabolite and the internal standard (i.e., common precursor ion mass), coupled with a metabolite product ion with identical mass to the product ion used in the MRM transition of the internal standard. These results emphasize (1) the need to carefully evaluate internal standard candidates with regard to potential interferences from metabolites during LC/MS/MS method development, validation and bioanalysis of small molecule analytes in biological matrices; (2) the value of HRMS as a tool to investigate unexpected interferences encountered during LC/MS/MS analysis of small molecules in biological matrices; and (3) the potential for interference regardless of choice of IS and therefore the importance of conducting assay robustness on incurred in vitro or in vivo study samples. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Tan  Xuerong  Jin  Quan  Lu  Jianwei  Zhao  Bin  Gou  Weini  Yang  Rong  Fu  Yu  Xu  Donghai  Zhang  Li 《Chromatographia》2022,85(5):433-445

A reliable and affordable QuEChERS (quick, easy, cheap, effective, rugged, and safe) methodology in combination with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC–MS/MS) was successfully developed and validated for the determination of eight bisphenols (BPs) residues containing in meats (chicken, duck, beef, pork, fish, shrimp, and mutton). A novel QuEChERS method optimization was carried out in terms of process efficiency (PE), matrix effect (ME), and extraction recovery (RE). After a simple vortex extraction of the samples with acetonitrile, 1 g sodium acetate was used for salting out (NaAC), and 100 mg primary secondary amine (PSA) purifying reagents were used for purification. The properties of the sorbents were assessed by the obtained parameters, such as matrix effect (ME), linearity, sensitivity, accuracy, and precision. Under the optimal conditions, BPs were well separated on an ACQUITY UPLC BEH ® C18 column in 8 min by gradient elution, and exhibited a good linear relationship (R2?>?0.9988) in the linear range. Moreover, the limits of detection (LODs) and the limits of quantification (LOQs) were located in the range of 0.01– 0.11 μg/kg and 0.03 – 0.37 μg/kg, respectively. The developed method was satisfactory in terms of accuracy (relative recoveries: 76.1% – 113.7%) and precision (relative standard deviations below 10.3%). Finally, the developed method was successfully employed to identify and quantify BPs residues in 28 real meat samples. The proposed QuEChERS-UPLC–MS/MS method is simple, high efficiency, cost-effective, practical, and susceptible to being implemented in routine laboratories to quickly detect the BPs in meats (chicken, duck, beef, pork, fish, shrimp, and mutton). In this sense, the method is useful for obtaining BPs residue data to evaluate the contamination status of BPs in meat food and provide scientific support for scientific supervision.

  相似文献   

12.
The synthetic peptide [Dmt(1)]DALDA (Dmt-D-Arg-Phe-Lys-NH(2); Dmt = 2',6'-dimethyltyrosine; 'super-DALDA') is a mu opioid-receptor agonist. On-line liquid chromatography/quadrupole time-of-flight mass spectrometry and the corresponding stable isotope-incorporated synthetic peptide internal standard were used to quantify [Dmt(1)]DALDA that had been extracted from ovine plasma samples. The [M+2H](2+) ion was used to construct the calibration curve, and the product ion was used for verification of the peptide. The detection sensitivity for the [Dmt(1)]DALDA [M+2H](2+) ion was 12.5 fmol and 50 fmol for the m/z 432.3 product ion. The concentration profile of [Dmt(1)]DALDA was determined from a set of ovine plasma samples. The molecular specificity of the peptide quantification was confirmed by tandem mass spectrometry (MS/MS).  相似文献   

13.
A high‐throughput, rapid, and efficient modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method with a simple cleanup procedure has been developed for simultaneously determining 227 pesticides in pepper samples by liquid chromatography with tandem mass spectrometry (running time: 10 min). Pesticide residues were extracted/partitioned with an acetonitrile/DisQuE QuEChERS pouch, and the resulting samples were cleaned up with different methods: dispersive solid‐phase extraction with primary secondary amines or multiwalled carbon nanotubes and graphitized carbon solid mini cartridge column. The results indicated that multiwalled carbon nanotubes dispersive sorbents achieved the best recoveries and had less matrix interference. The numbers of pesticides with a recovery in the range of 70–120% were 199 at a spiked level of 40 μg/kg. The correlation coefficients (r2) for 227 pesticides were above 0.99, while the limits of quantitation of pesticides in pepper samples ranged from 0.13 to 13.51 μg/kg (S/N = 10), and the limits of detection ranged from 0.04 to 4.05 μg/kg (S/N = 3). The relative standard deviations of approximately 197 pesticides were below 20% at spiked levels of 40 μg/kg. Based on these results, the proposed method was chosen as the most suitable cleanup procedure for the determination of multiresidue pesticides in pepper samples.  相似文献   

14.
We have developed a new internal standard method for the determination of the concentration of captopril (CAP) through surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using gold nanoparticles (Au NPs). This approach provided linearity for CAP over the concentration range 2. 5–25 μM (R 2 = 0. 987), with a limit of detection (signal-to-noise ratio = 3) of 1. 0 μM. The spot-to-spot variations in the concentration of CAP through SALDI-MS analyses performed in the absence and presence of the internal standard were 26% and 9%, respectively (15 measurements). This approach provides simplicity, accuracy, precision, and great reproducibility to the determination of the levels of CAP in human urine samples.  相似文献   

15.
A rapid and precise liquid chromatography coupled with hybrid ion trap/time‐of‐flight mass spectrometry method to detect and quantify caulophine and its possible active metabolites in rat plasma and urine was developed. Samples were prepared by plasma protein precipitation combined with a liquid‐liquid extraction method. The separation was carried out on an InertSustain® C18 column with a mobile phase comprising methanol and 0.1% aqueous formic acid solution. The analysis was complete in 20 min with a flow rate of 0.4 mL/min. Taspine was used as the internal standard. Mass spectrometric detection was conducted with hybrid ion trap/time‐of‐flight equipped with electrospray ionization in the positive ion mode. The calibration curves of caulophine were linear over the concentration ranges of 0.002–0.20 μg/mL for plasma and 0.005–0.50 μg/mL for urine with the correlation coefficients greater than 0.998 in both cases. The method was successfully used to investigate the pharmacokinetics and bioavailability in rat plasma and urine samples after intragastric and intraperitoneal administration of caulophine sodium salt.  相似文献   

16.
A method based on membrane‐protected micro‐solid‐phase extraction coupled with gas chromatography and mass spectrometry was developed for the determination of six ultraviolet filter compounds in various aqueous media. Multiwalled carbon nanotubes as the sorbent were encapsulated in a sealed polypropylene membrane packet and immersed in the sample to extract the analytes, and then dichloromethane was used for desorption purpose. The method was sensitive enough for quantitative analysis of the target analytes, with limits of quantification between 0.01 and 0.06 μg/L, and produced a linear response (R> 0.991) over the calibration range (0.05–6 μg/L). The obtained reproducibility was practically suitable with relative standard deviation values of less than 14% in pure water (spiked at 0.20/μg L) and less than 15% in real samples. The optimized method was applied for the analysis of real water samples with varying matrix complexity: tap, river, and dam water; geothermal spa; and sewage treatment plant effluent. Various levels and patterns of contamination were observed in the examined samples, while the sample from spa was the most contaminated, regarding the target analytes. Matrix spikes and matrix spike replicates were also analyzed to validate the technique for analysis of real aqueous samples, and satisfactory results were achieved.  相似文献   

17.
An anion‐exchange liquid chromatography method for the determination of heparin and its impurities (dermatan sulfate and oversulfated chondroitin sulfate) was developed using chemometric‐assisted optimization, including multivariate experimental design and response surface methodology. The separation of heparin, dermatan sulfate, and oversulfated chondroitin sulfate (Rs above 2.0) was achieved on a Dionex RF IC IonPac AS22 column with a gradient elution of 10–70% of 2.5 M sodium chloride and 20 mM Tris phosphate buffer (pH 2.1) at a flow rate of 0.6 mL/min and UV detection at 215 nm. Method validation shows good linearity (r > 0.99), acceptable precision (%relative standard deviations <11.4%) and trueness (%recovery of 92.3–103.9%) for all analytes. The limits of detection for dermatan sulfate and oversulfated chondroitin sulfate are equivalent to 0.11% w/w (10.5 μg/mL) and 0.07% w/w (7.2 μg/mL), while the limits of quantification are 0.32% w/w (31.5 μg/mL) and 0.22% w/w (22.0 μg/mL) relative to heparin, respectively. The method is specific for heparin, dermatan sulfate, and oversulfated chondroitin sulfate without interference from mobile phase and sample matrices and could be used for accurate quantitation the drug and its impurities in a single run. Applications of the method reveal contents of heparin between 90.3 and 97.8%. Dermatan sulfate and oversulfated chondroitin sulfate were not detected in any of the real‐life samples.  相似文献   

18.
N,N–dimethylacetamide is an excipient used in intravenous busulfan formulations, a drug used in hematopoietic stem cell transplantation conditioning. The aim of this study was to develop and validate a liquid chromatography-tandem mass spectrometry method for simultaneous quantification of N,N-dimethylacetamide, and its metabolite N-monomethylacetamide in plasma from children receiving busulfan. A 4 μl aliquot of patient plasma was extracted using 196 μl 50% methanol solution and quantified against calibrators prepared in the extraction solvent given negligible matrix effects across three concentrations. 9[H2]-N,N-dimethylacetamide was used as an internal standard. Separation of N,N-dimethylacetamide and N-monomethylacetamide was achieved using a Kinetex EVO C18 stationary phase (100 mm × 2.1 mm × 2.6 μm) running an isocratic mobile phase of 30% methanol containing 0.1% formic acid at a flow of 0.2 ml/min over 3.0 min. The injection volume was 1 μl. Calibration curves for N,N-dimethylacetamide and N-monomethylacetamide were linear up to 1200 and 200 μg/L, respectively, with a lower limit of quantification 1 μg/L for both analytes. Calibrator accuracy and precision were within ± 10% of the test parameters across four concentration levels. Analytes were stable over 14 days at three different storage conditions. This method was successfully applied to measure N,N-dimethylacetamide and N-monomethylacetamide concentrations in a total of 1265 plasma samples from 77 children.  相似文献   

19.
Previously, we reported that the matrix‐assisted laser desorption ionization spectrum of a peptide became reproducible when an effective temperature was held constant. Using a calibration curve drawn by plotting the peptide‐to‐matrix ion abundance ratio versus the peptide concentration in a solid sample, a peptide could be quantified without the use of any internal standard. In this work, we quantified proteins by quantifying their tryptic peptides with the aforementioned method. We modified the digestion process; e.g. disulfide bonds were not cleaved, so that hardly any reagent other than trypsin remained after the digestion process. This allowed the preparation of a sample by the direct mixing of a digestion mixture with a matrix solution. We also observed that the efficiency of the matrix‐to‐peptide proton transfer, as measured by its reaction quotient, was similar for peptides with arginine at the C‐terminus. With the reaction quotient averaged over many such peptides, we could rapidly quantify proteins. Most importantly, no peptide standard, not to mention its isotopically labeled analog, was needed in this method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Simple and highly efficient sample preparation procedures, namely, dispersive liquid–liquid microextraction and salting‐out liquid–liquid extraction for the analysis of ten Fusarium mycotoxins and metabolites in human urine were compared. Various parameters affecting extraction efficiency were carefully evaluated. Under optimal extraction conditions, salting‐out liquid–liquid extraction showed a better accuracy (84–96%) and precision (<14%) than dispersive liquid–liquid microextraction. Hence, a multibiomarker method based on salting‐out liquid–liquid extraction followed by gas chromatography with tandem mass spectrometry was proposed. Satisfactory results in terms of validation were achieved. The method resulted in low limits of detection and quantitation within the range of 0.12–4 and 0.25–8 μg/L, respectively. The method accuracy and precision were evaluated at three spiking levels (8, 25 and 100 μg/L) and the recoveries were in a range from 70 to 120% with relative standard deviations lower than 15%. Matrix effect was evaluated and matrix‐matched calibrations were used for quantitation purpose. The developed method was applied in 12 human urine samples as a pilot study before and after sample treatment with β‐glucuronidase before the analysis to quantify the mycotoxin conjugates. Total deoxynivalenol (free + conjugated) was found in 83% of samples at an average concentration in positive samples of 31.6 μg/L.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号