共查询到20条相似文献,搜索用时 15 毫秒
1.
采用溶胶-凝胶法,以甲基三乙氧基硅烷(MTES)为有机硅前驱体,通过酸-碱催化水解-缩合得到聚有机硅氧烷凝胶,经浸涂-提拉成膜技术在玻璃表面制备超疏水聚硅氧烷涂层。通过红外光谱(FT-IR)、水接触角(WCA)和场发射扫描电子显微镜(FE-SEM)等分析技术对涂层进行了结构表征、疏水性测试和表面形貌观察。结果表明,涂层内部形成带有甲基和残余硅羟基基团的网络结构。当n(MTES)∶n(EtOH)∶n(H2O)分别为1∶35∶8和1∶45∶8时,在室温制备的涂层对水的接触角可分别高达160°和162°,滚动角均低至7°,并且涂层在250℃以下的热处理过程中,其疏水性基本保持不变。FE-SEM观察证实了涂层表面分布着许多孔径为0.5~1.0μm的微孔和粒径为50~100 nm的纳米颗粒聚集体,具有微-纳米尺寸相结合的双重结构。此外涂层还具有较高的透明性、对腐蚀性液体具有超疏水性。研制得到的超疏水涂层有望用于玻璃、织物、金属和塑料等基底表面作为保护和防腐蚀涂膜。 相似文献
2.
3.
以轻质柔性的三聚氰胺泡沫(MF)作为基体,将其置于由乙二醇(EG)、硝酸银(AgNO3)、聚乙烯吡咯烷酮(PVP)和氯化铜(Cu Cl2)组成的反应溶液中,利用高温环境中发生的氧化还原反应在泡沫骨架上生成纳米银(Ag),随后通过真空浸渍法在泡沫基体中封装月桂酸(LA)制备相变复合材料.采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、差示扫描量热仪(DSC)和红外热成像仪等对制得的相变复合材料的形貌、结构和热性能进行研究.结果表明,当Ag NO3浓度为4 mg/m L时,纳米Ag均匀致密地沉积在MF骨架表面,且同时存在Ag纳米粒子(Ag NPs)和Ag纳米线(Ag NWs)两种形态.相变复合材料的相变焓高达144.0 J/g,相变焓效率超过了80%,呈现出优异的温度调节和储热能力.本文提供了一种制备综合性能优异的相变复合材料的新策略,有利于拓宽相变复合材料的应用领域. 相似文献
4.
5.
《高分子学报》2021,52(9):1165-1173
以4,4'-二苯基甲烷二异氰酸酯(MDI)、聚四氢呋喃醚二醇(PTMEG)、羟基封端的聚二甲基硅氧烷(HO-PDMS)、1,4-丁二醇(BDO)为原料,合成了有机硅改性的聚氨酯溶液,通过核磁共振、红外光谱技术对其结构进行表征,并研究了羟基硅油加入量对聚氨酯热稳定性、疏水性的影响.以有机硅改性的聚氨酯溶液为基体、含氟硅烷偶联剂改性的纳米二氧化硅颗粒为填料,喷涂制备超疏水涂层,研究了填料添加量对复合涂层疏水性的影响.结果表明:当硅油加入量为9 wt%,填料加入量为60 wt%时,复合涂层性能最优,水接触角为153.3°,滞后角为6.3°.经过200℃加热1 h后,仍然具有大于150°的水接触角.对复合涂层进行磨损实验与防冰测试,结果表明:该复合涂层在磨损过程中,在基底暴露之前,整个涂层基体都具有超疏水性;并且该涂层能有效降低结冰温度,延长结冰时间,具有良好的防冰性能. 相似文献
6.
将氢氧化镁(Mg(OH)2)凝胶沉积到棉纤维上,以提高棉纤维表面粗糙度和阻燃性能,随后将含有Mg(OH)2的棉纤维浸渍到聚二甲基硅氧烷(PDMS)溶液,获得阻燃超疏水棉织物。 并对棉纤维进行了傅里叶变换红外光谱仪(FTIR)、扫描电子显微镜(SEM)、疏水性、热稳定性、阻燃性能和耐久性测试。 结果表明,Mg(OH)2负载到织物上,使得织物表面具有一定的微/纳米结构,形成了粗糙涂层。 当Mg(OH)2浓度为1.0 mol/L时,Mg(OH)2/PDMS改性的织物接触角(CA)可达158°,极限氧指数(LOI)提升至24.5%,导热系数为0.0525 W/(m·K), 具有超疏水和阻燃性能。 整理后织物经过20次洗涤,100次磨擦,极端条件处理后,CA仍大于150°,LOI值高于23%,显示了较好的耐久性。 相似文献
7.
首先,采用三-(2-羟乙基)异氰酸脲酯(THIEC)作为增韧剂对三聚氰胺甲醛树脂(蜜胺树脂)进行化学改性,以提高树脂的韧性。然后,将改性蜜胺树脂与表面活性剂、发泡剂、固化剂、成核剂等充分混合搅拌,采用普通热发泡法制得三聚氰胺甲醛树脂泡沫(蜜胺泡沫)。用扫描电子显微镜(SEM)、氧指数仪、万能电子试验机、导热系数仪对蜜胺泡沫的形态结构、阻燃性能、力学性能及热绝缘性能进行了测试和分析。探究了发泡剂、固化剂用量对蜜胺泡沫表观密度及形态的影响。结果表明:当THIEC、发泡剂、固化剂、成核剂的用量依次为蜜胺树脂质量的15%、10%、6%、2%,发泡温度为80℃时,蜜胺泡沫的压缩强度达到150kPa、极限氧指数为34、导热系数为0.027W/(m·K),综合性能良好。 相似文献
8.
通过硝酸(HNO3)实现两亲性三聚氰胺海绵(MS)的一步式协同超疏水改性, 从而得到了一种具有优异性能的油水分离材料——硝酸改性三聚氰胺海绵(HMMS). 采用傅里叶变换红外光谱(FTIR)、 热重(TG)和扫描电子显微镜(SEM)对HMMS的结构、 形貌和组分进行了表征, 并对其表面润湿性、 机械性能、 吸附性能和油水分离性能等进行了研究. 结果表明, HMMS具有超疏水性, 以及优异的机械性能、 循环使用能力、 选择性吸附能力, 对油水混合物的连续分离效率可达6×10 6 L?m -3?h -1, 并且可在苛刻的使用环境中保持稳定的物理化学性质. 相似文献
9.
表面活性剂疏水链长对高温下泡沫稳定性的影响 总被引:3,自引:0,他引:3
选用不同疏水链长的α-烯烃磺酸盐(AOS)形成泡沫, 分别用泡沫衰减法和泡沫岩芯封堵法测定不同温度下的泡沫稳定性, 并采用动态表面张力、界面流变、分子模拟等方法研究了表面活性剂在气/液界面的吸附行为和界面吸附层的性质, 分析了高温下泡沫的稳定机制. 实验结果表明, 在高温下, 极性头的“锚定作用”减弱, 表面活性剂疏水链难以在气液界面保持以直立状态吸附, 疏水链碳数大于20的表面活性剂分子难以分立吸附, 其疏水链相互交叉缠绕, 增强了泡沫膜的强度, 减缓了气体通过液膜的扩散, 形成的泡沫在高温下具有较好的稳定性. 相似文献
10.
用三聚氰胺、甲醛和DJ-1型增韧剂在碱性条件下制备了改性三聚氰胺甲醛树脂,将其与表面活性剂、发泡剂、固化剂充分混合搅拌,采用微波发泡炉在一定的功率下进行发泡制备三聚氰胺泡沫塑料.研究了增韧剂的用量、微波功率和发泡时间对泡沫结构和性能的影响.并用光学显微镜、TGA、驻波管对三聚氰胺泡沫塑料的泡孔结构、热学性能和声学性能进行了测试和分析.研究表明:当发泡液质量为50 g时,最佳发泡功率为2 kW,最佳发泡时间为60 s;DJ-1型增韧剂的加入使泡沫的韧性提高,当其质量分数为10%时,泡沫的拉伸强度达到0.112 MPa;泡沫的分解温度约400℃,此时的质量残留率接近60%;泡沫在中高频(≥1 000 Hz)区域的吸声系数高达0.9以上. 相似文献
11.
超疏水材料由于其独特的非浸润性引起人们的广泛关注,近年来得到迅猛发展,各种适用于不同领域的功能性超疏水表面应运而生。其中,透明超疏水材料因其在光学领域的特殊贡献受到人们的青睐。透明疏水涂层技术对于实际应用具有重要的意义,透明涂层不仅可以满足光学器件防护的高透光率,还可以维持防护本体的基本外观,在自清洁、防污、防冰防雾、防腐蚀等领域都展示出广阔的应用前景。本文系统地阐述了超疏水表面以及其中功能性的透明超疏水表面的最新进展、表面的设计、制造和重要应用。尽管已经取得了重大进展,但是目前超疏水材料在耐久性方面还存在诸多问题,例如,容易被机械外力破坏、极端环境下表面的超疏水性质不稳定以及老化等问题,限制了透明疏水涂层技术的大范围应用。在未来的研究中,一方面继续丰富相关的理论知识,为透明疏水涂层技术的应用提供更多的理论支持,另一方面,提高涂层的透明度和机械耐久性能仍是未来研究的重中之重。 相似文献
12.
以三聚氰胺泡沫(MF)经高温碳化后制得的碳泡沫(CF)为基体, 以氯化铜(CuCl2)和水合肼(N2H4·H2O)溶液为前驱体, 利用氧化还原反应在泡沫骨架上生成铜粒子, 然后通过真空浸渍法将聚乙二醇(PEG)封装在基体中制得相变复合材料. 利用扫描电子显微镜(SEM)、 X射线衍射仪(XRD)、 差示扫描量热仪(DSC)和红外热成像仪等研究了相变复合材料的形貌、 结构和热性能. 结果表明, 当CuCl2浓度为1.0 mol/L时, Cu粒子均匀致密地沉积在CF骨架表面, 制得的相变复合材料在具备良好密封性能的前提下, 相变潜热可高达145.2 J/g, 热效率超过80%, 光热转换效率达到83.8%, 且呈现出优异的储热能力和调温性能. 本文为制备综合性能优异的相变复合材料提供了一种策略, 有利于拓宽相变复合材料的应用领域. 相似文献
13.
以天然石墨为原料,用Hummers法和超声剥离法制备了氧化石墨烯(GO).将氧化石墨烯浸渍,涂覆于三聚氰胺海绵表面,在线还原制得还原氧化石墨烯基三聚氰胺海绵(RGOME).通过扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)仪及光学接触角测定仪等分析了RGOME的结构,考察了RGOME对多种油品的吸附性能,并对其油水选择吸附性能和循环使用性能进行了研究.结果表明,RGOME具有疏水超亲油性,对油品的吸附量达到56~127 g/g,可用Bangham方程描述RGOME对甲苯和煤油的吸附动力学过程;在选择吸附过程中,油品浓度急剧降低,吸附量不断升高,分离效率达到74.49%,可较好地实现油水分离;吸附油品的RGOME经脱附可多次循环使用. 相似文献
14.
15.
基于巯基烯的点击化学反应,成功将γ-巯丙基三乙氧基硅烷(KH-580)与乙烯基封端的聚二甲基硅氧烷(vinyl-PDMS)接枝到织物上,制备出具有优异油水分离效果的超疏水织物。利用红外光谱、扫描电子显微镜、X-射线光电子能谱等对改性织物进行表征,并考察了其表面疏水性及油水分离性能。结果表明,得到的超疏水织物表面具有沟壑和条纹结构,接触角最高可达156°,滚动角最高可达2°。超疏水织物的油水分离效率最高为99.8%,并且在连续进行20次油水分离之后,依然保持99%的分离效率。 相似文献
16.
以常用工程材料硅树脂BP与St(o)ber法合成的二氧化硅(SiO2)分散液为原料,运用喷涂法(spray-coating)制备出了功能性微/纳粗糙(MNR)结构的超疏水涂层,其接触角可以达到146.5°,滚动角小于1°(测试液滴量为15μL).通过分析喷涂法制备复合涂层所需的条件,得出喷涂液pH=7.7-8.0时,在... 相似文献
17.
18.
19.
20.
聚磷酸铵的疏水改性及聚丙烯阻燃性能 总被引:2,自引:0,他引:2
首先以γ-氨丙基三乙氧基硅烷(KH550)对聚磷酸铵(APP)进行表面化学修饰,然后用水解后的正硅酸四乙酯在其表面引发原位聚合,最后用十七氟癸基三乙氧基硅烷(氟硅烷)进行外表面修饰,制备了疏水聚磷酸铵(M-APP).M-APP的静态接触角为134°,表明M-APP具有很好的疏水性.通过傅里叶变换红外光谱(FTIR)和X射线光电子能谱(XPS)对M-APP的结构及表面元素进行分析,结果表明,M-APP即为目标产物.将M-APP与三嗪成炭发泡剂(CFA)以质量比4∶1复配制备改性膨胀型阻燃剂(M-APP/CFA),并添加到聚丙烯(PP)中,制备阻燃PP(PP/M-APP/CFA).通过极限氧指数(LOI)和垂直燃烧(UL-94)研究了其阻燃性能,用热重分析(TGA)研究了材料的热降解行为,通过耐水测试研究了耐水性能,通过拉伸、弯曲和冲击强度研究了材料的力学性能,通过扫描电子显微镜(SEM)研究了改性膨胀型阻燃剂与聚合物的相容性.结果表明,当m IFR的添加量为23%时,PP/M-APP/CFA通过UL-94 V-0级,LOI值达到30.8%,且经过耐水测试后,依然能通过UL-94 V-0级,PP/M-APP/CFA的失重率仅为0.92%.在相同实验条件下,由APP制备的PP/M-APP/CFA材料在耐水测试后UL-94测试无级别,失重率达2.45%,表明APP的表面疏水改性大大提高了PP/M-APP/CFA材料的耐水性能.M-APP/CFA的加入提高了材料的热稳定性及成炭性能,燃烧时形成的膨胀炭层能很好地保护内部材料的降解和燃烧,从而提高了材料的阻燃性能.APP的改性提高了M-APP/CFA与PP的相容性,从而提高了材料的力学性能. 相似文献