首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two distinct 23Na MAS NMR lines in spectra of hydrated Na,NH4-Y zeolites at about −9 and −13 ppm (referenced to crystalline NaCl) were assigned to sodium lattice cations located in the large cavities (SIII) and inside the truncated octahedra (SI′ or SII′). This assignment was supported by the appearance of these two signals in spectra of air-dried and heat-treated La,Na-Y zeolites (obtained by conventional or contact-induced solid-state ion exchange), the more so as the intensity ratios corresponded to the cation distribution known to arise after the distinctly different pretreatments. It is concluded that slowly tumbling sodium cations are located in SIII whereas Na cations in truncated octahedra show stronger quadrupole interactions. A 23Na signal at −5.5 ppm sometimes observed in spectra of La,Na-Y zeolites was tentatively assigned to sodium cations located in the hexagonal prisms (SI).  相似文献   

2.
A series of mixed sodalite samples, Na(8)[Al(6)Si(6)O(24)]Br(x).(H(3)O(2))(2-x), with the unit cell stoichiometries varying in the 0 < x <2 region, was made by hydrothermal synthesis and subsequently transformed into Na(6+x)[Al(6)Si(6)O(24)]Br(x).(4H(2)O)(2-x) and Na(6+x)[Al(6)Si(6)O(24)]Br(x).circle(2-x) sodalites. Here, circle refers to an empty sodalite cage. The three series, referred hereafter to as the Br/basic, Br/hydro, and Br/dry series, were characterized by powder diffraction X-ray and by (23)Na, (27)Al, and (81)Br magic angle spinning (MAS) NMR and high-resolution triple quantum (TQ) MAS NMR spectroscopy. We determined that incorporation of Br(-) anions is 130 times more preferred than incorporation of H(3)O(2)(-) anions during the formation of sodalite cages, which permitted precise control of the halide content in the solid. Monotonic trends in chemical shifts were observed as a function of cage occupancy, reflecting continuous changes in structural parameters. A linear correlation between (81)Br chemical shift and lattice constant with a slope of -86 ppm/A was observed for all three series. Likewise, (23)Na chemical shifts for Na(+) cations in salt-bearing sodalite cages correlate linearly with the lattice constant. Both results indicate a universal dependence of the (23)Na and (81)Br chemical shifts on the Na-Br distance. The (27)Al chemical shifts of Br/basic and Br/hydro sodalites obey an established relation between delta(cs) and the average T-O-T bond angle of 0.72 ppm/degrees. Br/dry sodalites show two aluminum resonances, characterized by significantly different chemical shifts and quadrupolar interaction parameters. In that series, local symmetry distortions are evident from strong quadrupolar perturbations in the NMR spectra. P(Q) values for (27)Al vary between 0.8 MHz in Br/basic sodalites and 4.4 MHz in the Br/dry series caused by deviations from the tetrahedral symmetry of the salt-free sodalite cages. For (23)Na, P(Q) values of 0.8, 0.8, 2.0, and 5.7 MHz were found for sodium in bromo, basic, hydro, and dry cages, respectively. In addition, both (23)Na and (81)Br spectra offer some evidence that the Br(-) anions in the Br/dry sodalite are displaced from the center of the expanded sodalite cage. For all three series, the spectral deconvolution of the (23)Na NMR line shapes permits an accurate determination of the mixed sodalite stoichiometry.  相似文献   

3.
The influence of dehydration on the position of sodium and cesium cations obtained by ion exchange in the structure of FAU(Y) was studied by powder X-ray diffraction using synchrotron radiation and 23Na and 133Cs magic-angle spinning NMR spectroscopy. The sodium and cesium cations were found to be mobile in the hydrated samples. In dehydrated zeolites CsNaFAU(Y), cesium is predominantly localized in four crystallographic ion-exchange positions located in the large cavities and sodalite cages.  相似文献   

4.
The chemical environments of europium-exchanged NaX (Si/Al =1.16) and NaY (Si/Al = 2.29) zeolites have been investigated by means of 129Xe NMR and isotherm measurements of adsorbed xenon. EuNaX and EuNaY samples with varied concentrations of Eu cations were subjected to diverse chemical and thermal treatments, namely dehydration, reduction, oxidation, and re-reduction. Thermal analyses of hydrated EuNaX and EuNaY samples indicate that both the structural stability and the saturation concentration of water increase with increasing Eu content. For dehydrated EuNaY zeolites, the Eu3+ cations tend to replace Na+ ions at S2 sites and tend to be located in framework supercages; similar behavior is found for Eu2+ ions after reduction. After subsequent oxidation, Eu3+ ions migrate from supercages into small sodalite and/or D6R cages; similar results were deduced for samples after re-reduction. In contrast to the behavior observed in EuNaY, Eu3+ ions tend to exchange for Na+ ions in the sodalite and/or D6R cages in dehydrated EuNaX zeolites, regardless of the thermal treatment; this behavior is ascribed to the existence of unlocalized S3 Na+ in EuNaX samples.  相似文献   

5.
NaOH/poly(sodium acrylate) composites were prepared by in situ polymerization of acrylic acid with an overneutralization level by adding excess NaOH. The composites were studied by XRD, IR and 23Na MAS NMR spectroscopy. The results showed that the high neutralization degree (>100%) may lead to a complete polymerization. Both XRD and 23Na MAS NMR spectra did not show any peaks of phase-separated NaOH or Na2CO3 until the neutralization degree was up to 217.5%. It can be presumed that the aggregates of Na+ ions can contain approximately two Na+ units for every carboxyl group before the phase separation.  相似文献   

6.
We investigated by two-dimensional 23Na ORIACT MQMAS NMR and one-dimensional 23Na high-speed MAS NMR spectroscopy a homologous series of dehydrated zeolites with faujasite structure. The framework silicon to aluminum ratios varied between 1.06 and 2.60. In the case of zeolites Y (nSi/nAl = 2.60), we studied materials with sodium exchange degrees between 0 and 95%. The recently introduced ORIACT method (Caldarelli, S.; Ziarelli, F. J. Am. Chem. Soc. 2000, 122, 12015) significantly improved the resolution of the MQMAS spectra, in comparison with earlier studies. It was thus possible to extract meaningful quadrupole parameters by MQMAS NMR, which were used as a starting point for the simulation of 1D MAS NMR spectra to obtain more accurate values of the NMR parameters and site occupancy. We were able to show by this approach that in zeolite NaLSX the SI positions in the hexagonal prisms are occupied by sodium cations. For the homologous series of zeolites Y, it was found that sodium cations located at SII positions are the easiest to be substituted by ammonium ions through the exchange process.  相似文献   

7.
The feasibility of solid‐state magic angle spinning (MAS) 31P nuclear magnetic resonance (NMR) spectroscopy and 23Na NMR spectroscopy to investigate both phosphates and Na+ ions distribution in semi‐hard cheeses in a non‐destructive way was studied. Two semi‐hard cheeses of known composition were made with two different salt contents. 31P Single‐pulse excitation and cross‐polarization MAS experiments allowed, for the first time, the identification and quantification of soluble and insoluble phosphates in the cheeses. The presence of a relatively ‘mobile’ fraction of colloidal phosphates was evidenced. The detection by 23Na single‐quantum NMR experiments of all the sodium ions in the cheeses was validated. The presence of a fraction of ‘bound’ sodium ions was evidenced by 23Na double‐quantum filtered NMR experiments. We demonstrated that NMR is a suitable tool to investigate both phosphates and Na+ ions distributions in cheeses. The impact of the sodium content on the various phosphorus forms distribution was discussed and results demonstrated that NMR would be an important tool for the cheese industry for the processes controls. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
Crystalline sodium aluminogermanate hydroxosodalite hydrate Na6+x[Al6Ge6O24](OH)x · nH2O with x ≈ 1.6 and n ≈ 3.0 has been synthesized by reacting Al2O3, GeO2 and NaOH solution under hydrothermal conditions, and characterized by means of simultaneous thermal analysis, differential scanning calorimetry, X-ray and neutron diffraction as well as 1H and 23Na MAS NMR and IR spectroscopy. The material undergoes a reversible structural phase transition at Tc = 166 K (heating mode), which is actually a complex two-step transformation as detected in DSC measurements. Structure refinements of the cubic high-temperature form (cell constant a = 9.034(2) Å, room temperature) with single-crystal X-ray and powder neutron diffraction data have not yielded overall satisfactory results, probably due to the solid-solution character of the hydrosodalite. The refinements nevertheless demonstrate that (i) the sodalite host framework is a strictly alternating array of corner-linked AlO4 and GeO4 tetrahedra, and (ii) most polyhedral [4668] cavities are occupied by four sodium cations and one orientationally disordered hydrogen dihydroxide anion, H3O2?, which possesses a strong central hydrogen bond. Variable-temperature 1H MAS NMR spectra unambiguously confirm the presence of H3O2? ions and, in addition, reveal a dynamical intraionic exchange between the central and terminal protons and a rotational diffusion of those anions to occur in the high-temperature form. The nature of the guest complexes filling the remaining cages could not be unambiguously determined. Results are compared with those obtained in recent studies on the related sodium aluminosilicate hydrosodalite system of the general formula Na6+x[Al6Si6O24] (OH)x · nH2O.  相似文献   

9.
《Mendeleev Communications》2023,33(2):215-217
The local mobility and diffusion of Li+, Na+, and Cs+ cations in Nafion 117 membrane were explored by 7Li, 23Na, and 133Cs spin relaxation and pulsed field gradient NMR techniques. It was shown that the macroscopic mass transfer of cations is controlled by ion motion near sulfonate groups. Lithium and sodium cations, whose hydrated energy is higher than the water hydrogen bond energy, are moving together with water molecules, but cesium cations possessing a low hydrated energy are jumping directly between the neighboring sulfonate groups.  相似文献   

10.
The complexation of Li+ and Na+ cations by three bis(oxaalkyl) sulphates(IV) was studied by FTIR and NMR on 1H, 13C, 7Li and 23Na nuclei. The NMR results have proved the formation of complexes and the fluctuation of Li+ and Na+ cations in respective circular arrangements. In the FTIR spectra of protonated sulphates intense continuous absorptions were observed indicating fast fluctuation of the protons in the respective multiminima potentials. The continuous absorptions in the far infrared region of the FTIR spectra of Li+ or Na+ complexes with three bis(oxaalkyl) sulphates(IV) indicate fast fluctuations of Li+ or Na+ cations between O-atoms of the oxaalkyl chains. The independence of the shape of the continua on the length of the oxaalkyl chains, i. e. the number of minima in the multiminima potential, demonstrates that the fluctuation of cations occurs in the respective circular arrangements.  相似文献   

11.
Crystalline silicotitanate (CST), HNa3Ti4Si2O14·4H2O and the Nb-substituted CST (Nb-CST), HNa2Ti3NbSi2O14·4H2O, are highly selective Cs+ sorbents, which makes them attractive materials for the selective removal of radioactive species from nuclear waste solutions. The structural basis for the improved Cs+ selectivity in the niobium analogs was investigated through a series of solid-state magic angle spinning (MAS) NMR experiments. Changes in the local environment of the Na+ and Cs+ cations in both CST and Nb-CST materials as a function of weight percent cesium exchange were investigated using 23Na and 133Cs MAS NMR. Framework changes induced by Cs+ loading and hydration state were investigated with 29Si MAS NMR. Multiple Cs+ environments were observed in the CST and Nb-CST material. The relative population of these different Cs+ environments varies with the extent of Cs+ loading. Marked changes in the framework Si environment were noted with the initial incorporation of Cs+, however with increased Cs+ loading the impact to the Si environment becomes less pronounced. The Cs+ environment and Si framework structure were influenced by the Nb-substitution and were greatly affected by the amount of water present in the materials. The increased Cs+ selectivity of the Nb-CST materials arises from both the chemistry and geometry of the tunnels and pores.  相似文献   

12.
The title compound, [NaLaMo8O26(C3H7NO)7]n, contains infinite chains of [Mo8O26]4− units supporting di­methyl­form­amide‐coordinated LaIII cations and linked by Na+ cations. The lanthanum center adopts a nine‐coordinate geometry and the Na atom is sandwiched between two β‐[Mo8O26]4− units.  相似文献   

13.
The complex formation of lithium and sodium ions with silicon podand solvents: phenyl-tris(1,4-dioxapentyl) silane (PhSi23) and ethyl-tris(1,4-dioxapentyl) silane (EtSi23) has been studied by FTIR, 1H-, 13C-, 7Li- and 23Na NMR. The far FTIR spectra show that the Li+ cations fluctuate very fast whereas Na+ cations are still localised between the oxygen atoms of the oxaalkyl chains. The 7Li NMR spectra prove that one Li+ cation can be coordinated not only by one but also two silicon podand molecules. The concentration dependence of the molar conductivity of LiClO4 in the podand solvents indicates charge transfer between ion clusters.  相似文献   

14.
Multinuclear solid-state NMR and infrared spectroscopy have been applied to investigate the host-guest interactions and the nature of the adsorption sites of pyrrole on alkali-exchanged zeolites Y (LiNaY, NaY, KNaY, and CsNaY). The presence of pyrrole provokes changes in the MAS NMR spectra of (23)Na, (7)Li, and (133)Cs to a degree dependent upon the amount adsorbed. The decrease in the quadrupolar coupling constant for (23)Na as well as the shift for (7)Li and (133)Cs signals are attributed to the interaction of the cation with the pyrrole ring system. The adsorption of pyrrole induces the displacement of cations located at SI' and SII sites toward the supercage to bind the guest molecules. In this way, the distribution of the cations at nonframework sites depends on the amount of adsorbate in the zeolite. At low loadings, pyrrole molecules bind preferentially to more electropositive cation in partially exchanged zeolites Y. Quantitative analysis by (1)H NMR shows that the cation-pyrrole complexes formed possess a stoichiometry of 1:1. The origin of the basic site heterogeneity, evidenced by the presence of several components in the -NH infrared stretching band, is investigated assuming that the heterocycle of pyrrole interacts with cations at SII sites in the supercage and the -NH group forms a hydrogen bond with a basic oxygen atom placed in the framework six-member ring. Making use of the information derived from NMR, it is concluded that the main source of basic site heterogeneity comes from the number of aluminum atoms in the six-member rings of the SII site where the alkaline cation is located.  相似文献   

15.
A new amide of monensin A with 4-aminobenzo-15-crown-5 (M-AM3) was synthesised and its ability to form complexes with Na+ cations was studied by ESIMS, 1H, 13C and 23Na NMR, FTIR and PM5 semi-empirical methods. ESI mass spectrometry indicates that in the gas phase M-AM3 amide forms complexes of 1:1 and 1:2 stoichiometry with Na+ cations. The formation of such complexes is also confirmed in the acetonitrile solution, in which the existence of equilibrium between two structures A and B is found, of which B structure is dominant. The structures of M-AM3 and its 1:1 and 1:2 complexes with Na+ cations are stabilised by various intramolecular hydrogen bonds, which are discussed in detail. The in vitro biological tests have demonstrated that the new M-AM3 amide shows good activity towards some strains of Gram-positive bacteria (MIC 25-50 μg/ml).  相似文献   

16.
Grand Canonical Monte Carlo simulations combined with adsorption measurements have been carried out to gain further insight into the CO2 adsorption process at the microscopic scale in both LiY and NaY faujasites at various temperatures. A new Li+−CO2 force field derived by ab initio calculations was validated by a reasonable agreement between the simulated isotherms and those obtained by experiments in a wide range of temperature (from 323 K to 473 K). In addition, the microscopic mechanisms of CO2 adsorption in both systems, consistent with the trends observed for the simulated differential enthalpies of adsorption as a function of the loading, were proposed. It was observed that two different types of adsorption behaviour exist for NaY and LiY at 323 K and 373 K, mainly caused by the significant more exposed position of the SII Na+ from the six-ring plane of the supercage compared to those occupied by the SII Li+, whereas at higher temperature, both faujasites exhibit the same flat profile for the differential enthalpy of adsorption as a function of loading.  相似文献   

17.
Complexation of Na+-ion with polyethers and polyamides is studied by using 23Na NMR spectroscopy. The variation of the linewidth and the position of the 23Na NMR signal give evidence for the interaction of oxygen atoms of poly(ethylene oxide) in acetonitrile and those of siloxanes in T.H.F. with the solvated ion. In addition chemical shift data are given for perturbation of the Na+ solvation shell by interaction of the ion with substituted amides and polyamides in T.H.F.  相似文献   

18.
The interaction of 1,13-bis(8-quinolyl)-1,4,7,10,13-pentaoxatridecane (Kryptofix5) with alkali-metal cations (Li+, Na+, K+) in aprotic medium (acetonitrile) has been investigated. Conductance measurements demonstrated that 1:1 metal cation:ligand stoichiometries are found with these cations in this solvent. 7Li and 23Na NMR experiments were carried out by titration of the metal cation solutions with Kryptofix5 solution in CD3CN + CH3CN at 298 K. Thermodynamic parameters of complexation for this ligand and alkali-metal cations in acetonitrile at 278–308 K were derived from titration conductometry. The highest stability is found for sodium complex. The complexation sequence, based on the value of log K at 278–308 K was found to be Na+ > K+ > Li+.  相似文献   

19.
The local structure in crystals, melts, supercooled melts, and glasses of sodium silicate hydrates of composition Na2O · SiO2 · nH2O (n = 9, 6, 5) is studied by variable temperature 1H, 23Na, and 29Si MAS NMR spectroscopy. Detailed in situ investigations on the melting process of the crystalline materials reveal the importance of H2O motion in the melting mechanism. Depending on the local coordination, crystallographically distinct Na sites show different behaviour during the melting process. Upon melting, the monomer silicate anions present in the crystalline hydrates undergo condensation reactions to oligomeric silicate anions. No recrystallization but glass formation occurs at low temperature if the melts were heated initially about 10 K above the melting point. In the glasses also oligomeric silicate anions are present with a preference for cyclotrimer species. In situ MAS NMR investigations and electric conductivity measurements of the melts, supercooled melts, and glasses suggest the distinction of three temperature ranges characterized by different local structure and dynamics of the sodium cations, water and silicate anions. These ranges comprise a glass and glass transition range A at low temperatures, an aggregation region B at intermediate temperatures, and a solution or electrolyte region C at high temperatures. In region B aggregation of sodium water complexes to hydrated polycation clusters is suggested, the dynamic behaviour of which is clearly different to that of the silicate anions, indicating that no long-lived contact ion pairs between sodium cations and silicate anions are formed.  相似文献   

20.
《Solid State Sciences》2000,2(2):243-247
The crystal structure of Na3Bi5(PO4)6 was solved using the single-crystal X-ray diffraction technique. The structural refinement has led to a reliability factor of R1=0.0257 (wR2=0.0533) for 428 independent reflections. This compound was found to crystallize in the cubic system (space group I4̄3d) with eulytite structure and the lattice parameters: a=10.097 (4) Å, V=1029.38 Å3, Z=2, Dcalc.=5.43 g cm−3 (Dexp.=5.32(5) g cm−3). The structure is characterized by the existence of one single general position (48a) for oxygen anions and two distinguished positions (16c) occupied by Na+ and Bi3+ cations, respectively. The site occupation factors are equal to 3/8 and 5/8 for sodium and bismuth, respectively. Although all PO distances are identical (1.529(4) Å), the OPO angles ranging from 108.06 (15) to 112.32 (31)°, show that [PO4]3− are rather distorted. Both sodium and bismuth cations are located in octahedral sites with corresponding mean distances of NaO and BiO equal to 2.428 and 2.386 Å, respectively. As expected from the close values of the ionic radii of Na+ and Bi3+, these distances lie in the same range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号