首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hansen solubility parameters (HSPs) were established by Hansen in 1967 and predict miscibility between different material systems. So far, HSP theory works across polymers, crystalline bulk solids and nanomaterials and can be used to identify single solvents or, more likely, blends of solvents that deliver not only the initial solubility but also control it during reaction processes. This minireview summarizes the recent progress on HSP theory to optimize dispersion, exfoliation, synthesis, and device fabrication of inorganic nanomaterials. First, we briefly introduce HSP theory and determination of HSPs. Then, we discuss in detail the utilization of HSPs for inorganic nanomaterials, focusing on carbon nanomaterials, two-dimensional non-graphene nanomaterials, and metal oxide nanoparticles. Finally, challenges and perspectives of HSP theory in inorganic nanomaterials are reviewed.  相似文献   

2.
A homogeneous coating of nitrogen-doped carbon on carbon nanotubes is performed using ionic liquids. The N-doped material is employed as a support for nanoparticles. Electrochemical degradation behavior is monitored in situ and compared to an unmodified material. The strongly enhanced stability is explained on the basis of a Pt-nitrogen interaction.  相似文献   

3.
Since carbon nanotubes and onions were discovered, many methods have been proposed for their production. For applications the main requirements are low capital cost, high purity of the produced material, simplicity of technique, and its potential for scale up. Recently a cathodic arc between two graphitic electrodes immersed in liquids has been demonstrated to be a simple method to produce carbon nanoparticles such as nanotubes and onions. In this paper high-resolution transmission electron microscopy is employed to examine the shape of the nanoparticles and the purity of the final material produced under various conditions. In this study we have used an arc discharge in two different liquids--liquid nitrogen and distilled water--and we have changed the grade of the carbon electrodes. The variety in structure, shape, and size of the produced particles is discussed in line with a model proposed to describe the physical process.  相似文献   

4.
The Hansen solubility parameter (HSP) seems to be a useful tool for the thermodynamic characterization of different materials. Unfortunately, estimation of the HSP values can cause some problems. In this work different procedures by using inverse gas chromatography have been presented for calculation of pharmaceutical excipients' solubility parameter. The new procedure proposed, based on the Lindvig et al. methodology, where experimental data of Flory-Huggins interaction parameter are used, can be a reasonable alternative for the estimation of HSP values. The advantage of this method is that the values of Flory-Huggins interaction parameter chi for all test solutes are used for further calculation, thus diverse interactions between test solute and material are taken into consideration.  相似文献   

5.
Beneficial effects of fluorination on the stability of carbon nanofibre (CNF) dispersion in organic solvents as a function of time are evidenced. Because of their excellent friction properties, fluorinated CNFs (CF0.85) can be used as nanoparticles of tribo-active phase in lubrication; however, they have to be added into a matrix. We have shown that mixtures of CF0.85 are more stable than CNF solutions. Investigations by ultraviolet–visible spectroscopy have been carried out 2 h after sonication and after an ageing of 4 months. Hansen solubility theory was used, and after ageing, tribological and Raman spectroscopy experiments showed no significant modification of physicochemical properties of the CF0.85.  相似文献   

6.
A simple theory is presented for the spreading rate of film forming organic liquids on thick water layers. This theory is an extension of that of Ahmad and Hansen for thin water layers. The theory is compared with experimental data, and fair agreement is obtained. The analogy to longitudinal waves is discussed.  相似文献   

7.
In this paper we are interested in the reactivity of magnetic nanoparticles at the electrode involved in the electrochemical synthesis of magnetic and conductive liquids. The reactivity of charged colloidal particles occurs in two steps, first the approach toward the electrode with a possible adsorption phenomenon and secondly the electron transfer. In this paper we focus on the electrochemical behaviour of well-defined gamma-Fe(2)O(3) nanoparticles at a gold and at a mercury electrode. Particles can be electrochemically reduced at the two electrodes and can be dispersed into mercury at a highly negative potential. Here, we probe in particular the properties of nanoreactor of the particles, that is to say, the possible conservation of their size after they have undergone the electrochemical process. By correlating complementary techniques (here atomic force microscopy (AFM) observations, Raman spectroscopy and cyclic voltammetry on gold electrode) and by studying the magnetic properties of the material obtained after reduction of the particles on a mercury electrode, we are able to probe both the chemical nature and the physical state of the particles once transformed. Experimental results show that under specific conditions, the particles are individually converted into iron, which justifies their use for preparing a liquid with both magnetic properties and properties of electron conduction.  相似文献   

8.
Elastomer swelling and Hansen solubility parameters   总被引:4,自引:0,他引:4  
The prediction of how much an elastomer swells in contact with a given solvent is important in many industrial processes. In this article, Hansen solubility parameters (HSP) of two EPDM elastomers and one FKM elastomer were determined before vulcanisation by correlating solubility in those solvents that fully dissolved the polymers. These values were then used to generate plots of solvent swelling after the same elastomers were vulcanised. HSP correlations were also established for the same vulcanised elastomers at different levels of swelling. This makes its possible to predict the swelling of the elastomers studied in contact with many untested solvents.  相似文献   

9.
This article describes 1) a methodology for the green synthesis of a class of methylammonium and methylphosphonium ionic liquids (ILs), 2) how to tune their acid–base properties by anion exchange, 3) complete neat‐phase NMR spectroscopic characterisation of these materials and 4) their application as active organocatalysts for base‐promoted carbon–carbon bond‐forming reactions. Methylation of tertiary amines or phosphines with dimethyl carbonate leads to the formation of the halogen‐free methyl‐onium methyl carbonate salts, and these can be easily anion‐exchanged to yield a range of derivatives with different melting points, solubility, acid–base properties, stability and viscosity. Treatment with water, in particular, yields bicarbonate‐exchanged liquid onium salts. These proved strongly basic, enough to efficiently catalyse the Michael reaction; experiments suggest that in these systems the bicarbonate basicity is boosted by two orders of magnitude with respect to inorganic bicarbonate salts. These basic ionic liquids used in catalytic amounts are better even than traditional strong organic bases. The present work also introduces neat NMR spectroscopy of the ionic liquids as a probe for solute–solvent interactions as well as a tool for characterisation. Our studies show that high catalytic efficacy of functional ionic liquids can be achieved by integrating their green synthesis, along with a fine‐tuning of their structure. Demonstrating that ionic liquid solvents can be made by a truly green procedure, and that their properties and reactivity can be tailored to the point of bridging the gap between their use as solvents and as catalysts.  相似文献   

10.
We have developed a wet-chemistry procedure to attach a 10-40 nm colloidal gold nanoparticle to the top of a scanning probe microscopy (SPM) probe tip, making experiments of single nanoparticle interaction possible. This procedure of particle attachment is flexible and can be modified to attach nanoparticles of different kinds and sizes. The single-nanoparticle-terminated tips also have potential in various other applications, such as probes of enhanced sensitivity for optical and magnetic modes SPM.  相似文献   

11.
Experimental studies that follow behavior of single probes embedded in heterogeneous systems are increasingly common. The presence of probes may perturb the system, and such perturbations may or may not affect interpretation of host behavior from the probe observables typically measured. In this study, the manifestations of potential probe-induced changes to host dynamics in supercooled liquids are investigated via molecular dynamics simulations. It is found that probe dynamics do not necessarily mirror host dynamics as they exist either in the probe-free or probe-bearing systems. In particular, for a binary supercooled liquid, we find that smooth probes larger than the host particles induce increased translational diffusion in the host system; however, the diffusion is anisotropic and enhances caging of the probe, suppressing probe translational diffusion. This in turn may lead experiments that follow probe diffusion to suggest Stokes-Einstein behavior of the system even while both the probe-free and probe-bearing systems exhibit deviations from that behavior.  相似文献   

12.
It is taken for granted in the polymer world that the fundamental thermodynamic insights of Hansen solubility parameters (HSP) can be used to predict solvent/chemical interactions with polymers. The same principles should apply equally to bio-molecules interacting with that key polymer, DNA. A necessary (but not sufficient) condition for a drug to be cytotoxic is that it penetrates cell walls and be (thermodynamically) compatible with the core of the DNA polymer. The HSP of 9 cytotoxic drugs conform well to the basic HSP principle that “like (cell walls, DNA) attracts like (all 9 drugs)”. A correlation is not proof. But at the very least, HSP offer a fecund methodology for making predictions not only of how single molecules might interact with biological polymers, but how mixtures of chemicals could be more potent than the individual components. It is predicted, for example, that alcohols would provide synergism with many chemicals with their mixtures having higher affinity for the DNA bases than the individual components.  相似文献   

13.
Fluorine tin oxide (FTO) and multi-walled carbon nanotube (MWCNT) composites synthesized by a sol-gel process followed by a hydrothermal treatment process have been explored as a support for Pt nanoparticles (Pt-FTO/MWCNTs). X-ray diffraction analysis and high resolution transmission electron microscopy show that the Pt and FTO nanoparticles with crystallite size of around 4-8 nm are highly dispersed on the surface of MWCNTs. Pt-FTO/MWCNT catalyst is evaluated in terms of the electrochemical catalytic activity for methanol electrooxidation using cyclic voltammetry, steady state polarization experiments, and electrochemical impedance spectroscopy technique in acidic medium. The Pt-FTO/MWCNT catalyst exhibits a higher intrinsic catalytic activity for methanol electrooxidation with high stability during potential cycling than Pt nanoparticles supported on tin dioxide/multi-walled carbon nanotube composites. The results suggest that FTO/MWCNT composites could be considered as an alternative support for Pt-based electrocatalysts in direct alcohol fuel cells.  相似文献   

14.
Metal-organic frameworks (MOFs) have emerged as very fascinating functional materials due to their tunable nature and diverse applications. In this work, we prepared a magnetic porous carbon (MPC) nanocomposite by employing iron-containing MOFs (MIL-88A) as precursors through a one-pot thermolysis method. It was found that the MPC can absorb selectively single-stranded DNA (ssDNA) probe to form MPC/ssDNA complex and subsequently quench the labelled fluorescent dye of the ssDNA probe, which is resulted from the synergetic effect of magnetic nanoparticles and carbon matrix. Upon the addition of complementary target DNA, however, the absorbed ssDNA probe could be released from MPC surface by forming double-stranded DNA with target DNA, and accompanied by the recovery of the fluorescence of ssDNA probe. Based on these findings, a sensing platform with low background signal for DNA fluorescent detection was developed. The proposed sensing platform exhibits high sensitivity with detection limit of 1 nM and excellent selectivity to specific target DNA, even single-base mismatched nucleotide can be distinguished. We envision that the presented study would provide a new perspective on the potential applications of MOF-derived nanocomposites in biomedical fields.  相似文献   

15.
Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes: (1) equilibrium and kinetic rate constants of chemical reactions; (2) empirical polar parameters of ionic liquids; (3) spectral properties of probe molecules; (4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.  相似文献   

16.
The polymer framework of water-swollen copolymers of N,N-dimethylacrylamide, acrylamido-2-methylpropanesulfonic acid, and ethylenedimethacrylate (nominal cross-linking degrees of 4, 8, and 20 mol %) is composed of highly expanded domains, with "pores" not less than 6 nm in diameter. When the 4% cross-linked copolymer (DAE 26-4) is swollen with a 10(-4) M solution of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) in water, MeOH, EtOH, or nBuOH, the molecules of the paramagnetic probe rotate rapidly (τ<1000 ps) and as fast as in the bulk liquid in the case of water. The swelling degree of DAE 26-4 is related to the Hansen solubility parameters of a number of liquids, including linear alcohols up to n-octanol. It is also found that the rotational correlation time of TEMPOL in the copolymer swollen by water and the lightest alcohols increases with decreasing specific absorbed volume. Time-domain NMR spectrometry of water-swollen DAE 26-4 shows that sorption of only 14% of the liquid required for its complete swelling is enough for full hydration of the polymer chains. Accordingly, in fully swollen DAE 26-4 the longitudinal relaxation time of water closely approaches the value of pure water. {(13)C} CP-MAS NMR on partially and fully water swollen samples of DAE 26-4 shows that swelling increases the mobility of the polymer chains, as clearly indicated by the narrowing of the best-resolved peaks. DAE 26-4 was used as an exotemplate for the synthesis of nanocomposites composed of the polymer and nanostructured Fe(2)O(3) through a series of ion-exchange/precipitation cycles. After the first cycle the nanoparticles are 3-4 nm in diameter, with practically unchanged size after subsequent cycles (up to five). In fact, the nanoparticle size never exceeded the diameter of the largest available pores. This suggests that the polymer framework controls the growth of the nanoparticles according to the template-controlled synthesis scheme. Selected-area electron diffraction, TEM, and high-resolution electron microscopy show that the nanostructured inorganic phase is composed of hematite.  相似文献   

17.
Zhang Y  Zeng GM  Tang L  Li YP  Chen LJ  Pang Y  Li Z  Feng CL  Huang GH 《The Analyst》2011,136(20):4204-4210
This work developed a relatively inexpensive and layers-film construction electrochemical sensor for DNA recognition and its performance was investigated. The Fe(3)O(4) magnetic nanoparticles-cysteine were immobilized on the carbon paste electrode (CPE) surface using magnetic force. Multiwalled carbon nanotubes (MWCNTs), gold nanoparticles (GNPs), and chitosan (Chi) were used successively to coat on the electrode surface. The thiolated capture probe was assembled and competitively hybridized with the target nucleic acid and biotinylated response probe. The electrochemical behavior was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy. In addition, the sensor performance was also analyzed by introducing the notion of detection efficiency. The experimental results showed that although the electron transfer capability of the CPE is less strong than that of a metal electrode used in the DNA sensor, the materials modified on the CPE could significantly improve the performance. A detection limit of 1 nM of target DNA and a sensitivity of 2.707 × 10(3) mA M(-1) cm(-2) were obtained. Although the resulting detection limit was not remarkable, further experiments could improve it.  相似文献   

18.
We report that fluorescent carbon nanodots (C-dots) can act as an optical probe for quantifying Sn(II) ions in aqueous solution. C-dots are synthesized by carbonization and surface oxidation of preformed sago starch nanoparticles. Their fluorescence is significantly quenched by Sn(II) ions, and the effect can be used to determine Sn(II) ions. The highest fluorescence intensity is obtained at a concentration of 1.75 mM of C-dots in aqueous solution. The probe is highly selective and hardly interfered by other ions. The quenching mechanism appears to be predominantly of the static (rather than dynamic) type. Under optimum conditions, there is a linear relationship between fluorescence intensity and Sn(II) ions concentration up to 4 mM, and with a detection limit of 0.36 μM.
Figure
Highly fluorescent carbon nanodots (CDs) were synthesized from preformed starch nanoparticles via a green synthetic method. The potential application of these CDs as a sensing probe for Sn(II) ions were evaluated. Our studies showed that CDs are highly sensitive and selective towards Sn(II) detection in aqueous system.  相似文献   

19.
New gold nanoparticles covered with cyclic phenylazomethine (CPA) were obtained by a one-pot synthesis. It is confirmed by XPS that imines of CPA in the nanoparticles (Au-CPA) are partially reduced to amines. The amine part of CPA in Au-CPA is attached to the surfaces of gold nanoparticles, and the imine part works as a redox-active site. A glassy carbon electrode modified with Au-CPA was revealed to work as an electrochemical probe for metal ion sensing.  相似文献   

20.
Microchimica Acta - Bucky gels are gelatinous composite materials consisting of carbon nanotubes and ionic liquids. The authors describe the synthesis of a bucky gel containing Fe3O4 nanoparticles...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号