首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We discuss resonant tunneling through quantum dot energy levels considering the charging energy of the dot. The hamiltonian of the system is reduced to a form of the Anderson hamiltonian of resonant tunneling. The mean-field approximation is applied and current–voltage characteristics are evaluated. The self-consistent solution is investigated for the low tunneling rate case in the low-temperature condition. The current bistability and the related current hysteresis are pointed out. The Coulomb staircase is shown in the current–voltage characteristics. These features are all due to Coulomb repulsion within the dot.  相似文献   

2.
3.
4.
5.
6.
王瑞琴  宫箭  武建英  陈军 《物理学报》2013,62(8):87303-087303
电子的隧穿时间是描述量子器件动态工作范围的重要指标. 本文考虑k3 Dresselhaus 自旋轨道耦合效应对系统哈密顿量的修正, 结合转移矩阵方法和龙格-库塔法来解含时薛定谔方程, 进而讨论了电子在非磁半导体对称双势垒结构中的透射系数及隧穿寿命等问题. 研究结果发现:由于k3 Dresselhaus 自旋轨道耦合效应使自旋简并消除, 并在时间域内得到了表达, 导致自旋向上和自旋向下电子的透射峰发生了自旋劈裂; 不同自旋取向的电子构建时间和隧穿寿命不同, 这是导致自旋极化的原因之一; 电子的自旋极化在时间上趋于稳定. 关键词: 自旋极化输运 透射系数 隧穿寿命 自旋极化率  相似文献   

7.
8.
Structures where the electrons of a two-dimensional electron gas are confined to disconnected regions can be fabricated by the use of appropriate gate geometries. The transport between these electrostatically defined quantum dots takes place by tunneling. Using the tunneling Hamiltonian approach we present a theoretical model of the system including electron-phonon interaction. The relevant coupling constants are determined from realistic wave functions for the expected confinement potentials. The phonon part of the Hamiltonian is diagonalized using a canonical transformation. Starting from the determination of the transmission matrix for the interacting system we calculate the current-voltage characteristics for different temperatures and phonon coupling strengths.  相似文献   

9.
10.
应用非平衡格林函数方法,研究了带有微波调制的侧向耦合量子点的量子线中的光辅助隧穿.在考虑了量子干涉和微波场的情况下,得出并讨论了电子传榆幅度和相位方面的信息.电子传输幅度显示出一系列的反共振峰(对应图中的谷结构).峰值的高度与振荡的微波场的幅度和频率有关,而峰的位置只与微波场的频率有关.在有限温的情况下,反共振峰值的高度随着温度的增加而减小,当温度足够高时,反共振峰会消失,特别地,在一定的温度下,低温下谷的地方会演变成峰.  相似文献   

11.
12.
An investigation was made of the resonance conditions in systems of one-dimensional potential barriers of a general kind. The types of systems are identified and the conditions determined which are necessary for observing a broad resonance in which the first three derivatives of the energy transmission coefficient are equal to zero. The conditions are found for observing an isolated resonance with complete transparency on a background of resonances with incomplete transparency.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 49–53, August, 1993.  相似文献   

13.
14.
15.
16.
We observed non-exponential relaxation for a quantum tunneling molecular magnetic system at very low temperatures and argue that it results from evolving intermolecular dipole fields. At the very beginning of the relaxation, the magnetization follows a square-root time dependence. A simple model is developed for the intermediate time range that is in good agreement with the data over 4 decades in time. Detailed numerical calculations as well as measurements are presented which indicate unusual correlation effects in these systems. Received: 15 May 1998 / Revised: 10 July 1998 / Accepted: 11 July 1998  相似文献   

17.
18.
19.
Efficient single photon detection by quantum dot resonant tunneling diodes   总被引:1,自引:0,他引:1  
We demonstrate that the resonant tunnel current through a double-barrier structure is sensitive to the capture of single photoexcited holes by an adjacent layer of quantum dots. This phenomenon could allow the detection of single photons with low dark count rates and high quantum efficiencies. The magnitude of the sensing current may be controlled via the thickness of the tunnel barriers. Larger currents give improved signal to noise and allow sub-mus photon time resolution.  相似文献   

20.
We demonstrate the formation of superluminal optical soliton in an symmetry semiconductor double quantum dot (QD) driven coherently by a weak pulsed laser using the tunnel coupling. It is shown that the group velocity of the soliton can be larger than the vacuum light speed c, i.e., superluminal soliton can be produced. The results obtained can be used for the development of new types of nanoelectronic devices for realizing high-speed optical modulation and rapidly responding quantum switching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号