首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The problem of decentralized iterative learning control for a class of large scale interconnected dynamical systems is considered. In this paper, it is assumed that the considered large scale dynamical systems are linear time-varying, and the interconnections between each subsystem are unknown. For such a class of uncertain large scale interconnected dynamical systems, a method is presented whereby a class of decentralized local iterative learning control schemes is constructed. It is also shown that under some given conditions, the constructed decentralized local iterative learning controllers can guarantee the asymptotic convergence of the local output error between the given desired local output and the actual local output of each subsystem through the iterative learning process. Finally, as a numerical example, the system coupled by two inverted pendulums is given to illustrate the application of the proposed decentralized iterative learning control schemes.  相似文献   

2.
In this paper, the problem of the robust stabilization for a class of uncertain linear dynamical systems with time-varying delay is considered. By making use of an algebraic Riccati equation, we derive some sufficient conditions for robust stability of time-varying delay dynamical systems with unstructured or structured uncertainties. In our approach, the only restriction on the delay functionh(t) is the knowledge of its upper boundh . Some analytical methods are employed to investigate these stability conditions. Since these conditions are independent of the delay, our results are also applicable to systems with perturbed time delay. Finally, a numerical example is given to illustrate the use of the sufficient conditions developed in this paper.  相似文献   

3.
The problem of finite-time stabilizing control design for state-dependent impulsive dynamical linear systems (SD-IDLS) is tackled in this paper. Such systems are characterized by continuous-time, linear, possibly time-varying, dynamics coupled with discrete-time, linear, possibly time-varying, dynamics. The continuous-time part determines the system evolution in any time interval between two consecutive resetting events, while the discrete-time part governs its instantaneous state jump whenever the system trajectory intersects a resetting set, i.e. a region of the state space assumed to be time-independent. By making use of a quadratic control Lyapunov function, the finite-time stabilization of SD-IDLS through a static output feedback control design is specifically discussed in this paper. A sufficient and constructive result is provided based on the conical hulls of the resetting set subregions and on some cone copositivity properties of the chosen control Lyapunov function. Such a result is based on the solution of a feasibility problem that involves a set of coupled Difference/Differential Linear Matrix Inequalities (D/DLMI), which is shown to be less conservative and more numerically amenable with respect to other results available in the literature. An example illustrates the effectiveness of the proposed approach.  相似文献   

4.
Complex nonlinear systems can be represented to a set of linear sub-models by using fuzzy sets and fuzzy reasoning via ordinary Takagi-Sugeno (TS) fuzzy models. In this paper, the exponential stability of TS fuzzy bidirectional associative memory (BAM) neural networks with impulsive effect and time-varying delays is investigated. The model of fuzzy impulsive BAM neural networks with time-varying delays established as a modified TS fuzzy model is new in which the consequent parts are composed of a set of impulsive BAM neural networks with time-varying delays. Further the exponential stability for fuzzy impulsive BAM neural networks is presented by utilizing the Lyapunov-Krasovskii functional and the linear matrix inequality (LMI) technique without tuning any parameters. In addition, an example is provided to illustrate the applicability of the result using LMI control toolbox in MATLAB.  相似文献   

5.
The problem of the robust stability of large-scale dynamical systems including delayed states and parameter perturbations in interconnections is considered. By using algebraic Riccati equations and some analytical methods, some sufficient conditions on linear decentralized state feedback controllers are derived so that the systems remain stable in the presence of delayed states and parameter perturbations. Such conditions give some bounds on the perturbations of interconnections with delayed states and uncertain parameters, and result in a quantitative measures of robustness for large-scale dynamical systems including delayed states and uncertain parameters in interconnections. The results obtained in this paper are applicable not only to large-scale systems with multiple time-varying delays, but also to large-scale systems without exact knowledge of the delays, i.e., large-scale systems with uncertain delays.  相似文献   

6.
This paper studies the adaptive cluster synchronization of a generalized linearly coupled network with time-varying delay and distributed delays. This network includes nonidentical nodes displaying different local dynamical behaviors, while for each cluster of that network the internal dynamics is uniform (such as chaotic, periodic, or stable behavior). In particular, the generalized coupling matrix of this network can be asymmetric and weighted. Two different adaptive laws of time-varying coupling strength and a linear feedback control are designed to achieve the cluster synchronization of this network. Some sufficient conditions to ensure the cluster synchronization are obtained by using the invariant principle of functional differential equations and linear matrix inequality (LMI). Numerical simulations verify the efficiency of our proposed adaptive control method.  相似文献   

7.
This paper considers dynamical compensators design for purpose of pole assignment for discrete-time linear periodic systems. Similar to linear time-invariant systems, it is pointed out that the design of a periodic dynamical compensator can be converted into the design of a periodic output feedback controller for an augmented system. Utilizing the recent result on output feedback pole assignment, parametric solutions for this problem are obtained. The design approach can be used as a basis for the robust dynamical compensator design for this type of systems. Combined with a robustness index presented in this paper, robust dynamical compensator design problem is converted into a constrainted optimization problem. A numerical example is employed to illustrate the validity and feasibility of the methods.  相似文献   

8.
This paper investigates the cluster synchronization problem for the time-varying delays coupling networks with nonidentical delayed dynamical systems by using pinning control method. We derive some simple and useful criteria for cluster synchronization for any initial values through an effective feedback control scheme and propose an adaptive feedback strategy that adjusts automatically the coupling strength. Finally, some numerical examples are then given to illustrate the theoretical results.  相似文献   

9.
研究了一类具有时变区间参数的不确定随机线性系统的均方鲁棒稳定性.利用时变区间矩阵的分解技术、矩阵的Kronecker积的性质和Lyapunov函数法,得到了该系统均方鲁棒稳定的几个充分性条件.通过一个数值例子说明了所得的这些充分性条件的有效性和实用性.  相似文献   

10.
The synchronization problem of some general complex dynamical networks with time-varying delays is investigated. Both time-varying delays in the network couplings and time-varying delays in the dynamical nodes are considered. The delays considered in this paper are assumed to vary in an interval, where the lower and upper bounds are known. Based on a piecewise analysis method, the variation interval of the time delay is firstly divided into several subintervals, by checking the variation of the derivative of a Lyapunov function in every subinterval, then the convexity of matrix function method and the free weighting matrix method are fully used in this paper. Some new delay-dependent synchronization stability criteria are derived in the form of linear matrix inequalities. Two numerical examples show that our method can lead to much less conservative results than those in the existing references.  相似文献   

11.
赵小文  蒋威 《数学研究》2012,45(2):192-197
研究了变时滞退化Lurie控制系统的绝对稳定性问题.基于Lyapunov稳定性理论,利用线性矩阵不等式方法给出了系统绝对稳定的判别准则.讨论了变时滞退化Lurie直接控制系统和间接控制系统的绝对稳定性,得到绝对稳定性的充分条件仅依赖于时滞导数的大小,且时滞可以是无界函数:最后给出了实例说明本文结果的有效性.  相似文献   

12.
In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter.  相似文献   

13.
In this paper, we investigate the problem of stabilization via state feedback and/or state-based switching for switched linear systems with mode-dependent time-varying delays. By using the multiple Lyapunov functional method, we establish sufficient conditions that guarantee the switched system is stabilizable via state feedback and/or switching under time-varying delays with appropriate upper bounds. The main results are presented in terms of linear matrix inequalities (LMIs) which generalize some known results and can be easily tested by using the Matlab’s LMI Tool-box.  相似文献   

14.
文章研究了基于非周期间歇性控制的具有多重权值和耦合时滞的复杂网络固定时间同步问题.通过构建具有多重权值的复杂网络模型,并基于固定时间稳定性引理和矩阵理论,给出了实现复杂网络固定时间同步的充分条件.此外,文章设计了固定时间非周期切换控制器,获得了实现复杂网络同步的时间上界的估计值.结论证明了实现网络同步的时间与网络的初始状态无关,最后数值模拟说明了理论结果的正确性和有效性.  相似文献   

15.
首先研究了一般非齐次线性时变控制系统状态向量收敛至给定平衡点的充分性条件.进一步讨论了感应电动机磁链控制模型,给出了定子磁链渐近跟踪控制的条件.  相似文献   

16.
The global optimal control problem is proposed for a special class of hybrid dynamical systems, i.e. impulsive switching systems. Then the necessary condition of the above problem, the minimum principle, is given. Ekeland’s variational principle and the matrix cost functional structure expression are utilized in the process of the proof. Based on the main result, a special linear hybrid impulsive and switching system (HISS) is illustrated and the optimal control algorithm is presented. Moreover, the cases of pure impulsive systems and pure switched systems are included in this paper.  相似文献   

17.
In this paper, we investigate the synchronization of non-autonomous chaotic systems with time-varying delay via delayed feedback control. Using a combination of Riccati differential equation approach, Lyapunov-Krasovskii functional, inequality techniques, some sufficient conditions for exponentially stability of the error system are formulated in form of a solution to the standard Riccati differential equation. The designed controller ensures that the synchronization of non-autonomous chaotic systems are proposed via delayed feedback control and intermittent linear state delayed feedback control. Numerical simulations are presented to illustrate the effectiveness of these synchronization criteria.  相似文献   

18.
In this paper, a theory for synchronization of multiple dynamical systems under specific constraints is developed from a theory of discontinuous dynamical systems. The concepts on synchronization of two or more dynamical systems to specific constraints are presented. The synchronization, desynchronization and penetration of multiple dynamical systems to multiple specified constraints are discussed, and the necessary and sufficient conditions for such synchronicity are developed. The synchronicity of two dynamical systems to a single specific constraint and to multiple specific constraints is investigated. Finally, the synchronization and the corresponding complexity for multiple slave systems with multiple master systems are discussed briefly. The meaning of synchronization for dynamical systems with constraints is extended as a generalized, universal concept. The theory presented in this paper may be as a universal theory for dynamical systems. The paper provides a theoretic frame work in order to control slave systems which can be synchronized with master systems through specific constraints in a general sense.  相似文献   

19.
In this paper, the disturbance decoupling problem and the model matching problem for discrete-time linear systems with time-varying delays are considered. Solvability of the above problems is characterized by means of structural necessary and sufficient conditions that can be checked by algorithmic procedures. The basic method used to analyze the considered problems consists in representing the discrete-time linear systems with time-varying delays as switching linear systems, whose properties can be studied by a powerful structural approach. In this way, the considered control problems can be reduced to the corresponding problems for switched linear systems, whose solvability has been recently characterized.  相似文献   

20.
In this paper, a simple adaptive feedback control is proposed for full and reduced-order synchronization of time-varying and strictly uncertain chaotic systems. Our method uses only one feedback gain with parameter adaptation law and converges very fast even in the presence of noise. For full synchronization, a drive-response system consisting of two second-order identical parametrically excited oscillators achieve global synchronization; while for reduced-order synchronization, the dynamical evolution of a second-order parametrically driven oscillator is synchronized with the projection of a third-order time-varying chaotic system. The effectiveness of our approach is demonstrated using numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号