首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new three-dimensional platinum(II)–thallium(I) coordination polymer [{Pt(pda)(NHCOtBu)2}4Tl4][Pt(CN)4]2·2H 2 O (pda = 1,2-propyldiamine) has been prepared from the direct reaction of [Tl2Pt(CN)4] and [Pt(pda)(NHCOtBu)2] in water, and its structure was characterized by X-ray diffraction analysis. The compound crystallizes in monoclinic, space group Pn, a = 11.567(2) Å, b = 11.570(2) Å, c = 37.677(8)Å, β = 94.64(3)°, V = 5025.8(17) Å3, Z = 2, R1 = 0.0679 and wR2 = 0.1574 [I >  2σ (I)], Goodness-of-fit on F 2 = 1.055. The compound exhibits a novel 3D network structure consisting of [Pt(CN)4]2? connected 1D infinite Pt–Tl–Pt–Tl chains via strong Pt–Tl bonds.  相似文献   

2.
Bimetallic Pd–Ru/C catalyst was shown to be much more active in the aqueous-phase hydrogenation of furfural (473 K, 8 MPa) in comparison with both Pd/C and Ru/C catalysts. The enhanced hydrogenation activity manifested itself as an increased yield of cyclopentanol (77%) at a complete conversion of furfural. The observed synergistic effect between palladium and ruthenium in the tested reaction can be related to changes in the electronic state and particle size of supported metals upon interaction with each other and the Pd–Ru alloy formation.  相似文献   

3.
Engineering coordinated rotational motion in porous architectures enables the fabrication of molecular machines in solids. A flexible two-fold interpenetrated pillared Metal-Organic Framework precisely organizes fast mobile elements such as bicyclopentane (BCP) (107 Hz regime at 85 K), two distinct pyridyl rotors and E-azo group involved in pedal-like motion. Reciprocal sliding of the two sub-networks, switched by chemical stimuli, modulated the sizes of the channels and finally the overall dynamical machinery. Actually, iodine-vapor adsorption drives a dramatic structural rearrangement, displacing the two distinct subnets in a concerted piston-like motion. Unconventionally, BCP mobility increases, exploring ultra-fast dynamics (107 Hz) at temperatures as low as 44 K, while the pyridyl rotors diverge into a faster and slower dynamical regime by symmetry lowering. Indeed, one pillar ring gained greater rotary freedom as carried by the azo-group in a crank-like motion. A peculiar behavior was stimulated by pressurized CO2, which regulates BCP dynamics upon incremental site occupation. The rotary dynamics is intrinsically coupled to the framework flexibility as demonstrated by complementary experimental evidence (multinuclear solid-state NMR down to very low temperatures, synchrotron radiation XRD, gas sorption) and computational modelling, which helps elucidate the highly sophisticated rotor-structure interplay.  相似文献   

4.
Metallophilicity is an essential concept that builds upon the attraction between closed shell metal ions. We report on the [M2(bisNHC)2]2+ (M=AuI, AgI; NHC=N-heterocyclic carbene) systems, which display almost identical features in the solid state. However, in solution the Au2 cation exhibits a significantly higher degree of rigidity owed to the stronger character of the aurophilic interactions. Both Au2 and Ag2 cationic constructs are able to accommodate Ag+ ions via M–M interactions, despite their inherent Coulombic repulsion. When electrostatic repulsion between host and guest is partially diminished, M–M distances are substantially shortened. Quantum chemical calculations estimate intermetallic bond orders up to 0.2. Although at the limit of (or beyond) the van der Waals radii, metallophilic interactions are responsible for their behavior in solution.  相似文献   

5.
Molecularly imprinted polymer, exhibiting considerable enantioselectivity for L-mandelic acid, was prepared using metal coordination-chelation interaction. By evaluating the recognition characteristics in the chromatographic mode, the recognition interactions were proposed: specific and nonspecific metal coordination-chelation interaction and hydrophobic interaction were responsible for substrate binding on metal-complexing imprinted polymer; while the selective recognition only came from specific metal coordination-chelation interaction and specific hydrophobic interaction.  相似文献   

6.
Electrosynthesis coupled hydrogen production (ESHP) mostly involves catalyst reconstruction in aqueous phase, but accurately identifying and controlling the process is still a challenge. Herein, we modulated the electronic structure and exposed unsaturated sites of metal–organic frameworks (MOFs) via ligand defect to promote the reconstruction of catalyst for azo electrosynthesis (ESA) coupled with hydrogen production overall reaction. The monolayer Ni-MOFs achieved 89.8 % Faraday efficiency and 90.8 % selectivity for the electrooxidation of 1-methyl-1H-pyrazol-3-amine (Pyr−NH2) to azo, and an 18.5-fold increase in H2 production compared to overall water splitting. Operando X-ray absorption fine spectroscopy (XAFS) and various in situ spectroscopy confirm that the ligand defect promotes the potential dependent dynamic reconstruction of Ni(OH)2 and NiOOH, and the reabsorption of ligand significantly lowers the energy barrier of rate-determining step (*Pyr−NH to *Pyr−N). This work provides theoretical guidance for modulation of electrocatalyst reconstruction to achieve highly selective ESHP.  相似文献   

7.
In this study, a strategy that can result in the polyaniline (PANI) solely confined within the nanopores of a metal–organic framework (MOF) without forming obvious bulk PANI between MOF crystals is developed. A water-stable zirconium-based MOF, UiO-66-NH2, is selected as the MOF material. The polymerization of aniline is initiated in the acidic suspension of UiO-66-NH2 nanocrystals in the presence of excess poly(sodium 4-styrenesulfonate) (PSS). Since the pore size of UiO-66-NH2 is too small to enable the insertion of the bulky PSS, the quick formation of pore-confined solid PANI and the slower formation of well dispersed PANI:PSS occur within the MOF crystals and in the bulk solution, respectively. By taking advantage of the resulting homogeneous PANI:PSS polymer solution, the bulk PANI:PSS can be removed from the PANI/UiO-66-NH2 solid by successive washing the sample with fresh acidic solutions through centrifugation. As this is the first time reporting the PANI solely confined in the pores of a MOF, as a demonstration, the obtained PANI/UiO-66-NH2 composite material is applied as the electrode material for supercapacitors. The PANI/UiO-66-NH2 thin films exhibit a pseudocapacitive electrochemical characteristic, and their resulting electrochemical activity and charge-storage capacities are remarkably higher than those of the bulk PANI thin films.  相似文献   

8.
The fabrication of state-of-the-art membranes with customized functions and high efficiency is of great significance, but presents challenges. Emerging metal-organic frameworks (MOFs)/polymer hybrid membranes have provided bright promise as an innovative platform to target multifunctional hybrid materials and devices; this is thanks to their unique properties, which come from three components that are collaboratively enforced. This minireview provides a brief overview of recent progress in the construction of such hybrid membranes, and highlights some of their very important applications in separation, conduction, and sensing.  相似文献   

9.
A series of new iridium complexes, IrCl(COD)(TMOPP) (1) [COD=1,5-cyclooctadiene, TMOPP=tris(4- methoxyphenyl)phosphine], IrCl(COD)(TFMPP) (2) [TFMPP = tris(4-trifluoromethylphenyl)phosphine], IrCl(COD)(BDNA) (3) [BDNA= 1,8-bis(diphenylphosphinomethyl)naphthalene], IrCl(COD)(BISBI) (4) [BISBI= 2,2'-bis(diphenylphosphinomethyl)biphenyl] and IrCl(COD)(BDPB) (5) [BDPB= 1,2-bis(diphenylphosphinomethyl)benzene], were synthesized and characterized by NMR spectra and elemental analyses. In order to obtain the relationships between complex structures and their catalytic properties, IrCl(COD)(DPPM) (6) [DPPM = bis(diphenylphosphino)methane], IrCl(COD)(DPPE) (7) [DPPE= 1,2-bis(diphenylphosphino)ethane], IrCl(COD)(DPPP) (8) [DPPP=1,3-bis(diphenylphosphino)propane] and IrCl(COD)(TPP) (9) [TPP=triphenylphosphine], were also synthesized according to the reported methods. The hydrogenation results showed that the low electronic density at the central metal was favorable to increase the catalytic activity for the hydrogenation of avermectin, but decrease the selectivity to ivermectin. The complex with a large chelating ring and a bulky chelating backbone would easily cause the cleavage of C-O bond in avermectin to give a byproduct avermectin aglycon.  相似文献   

10.
The semihydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry. Unfortunately, state-of-the-art heterogeneous catalysts hardly achieve high turnover frequencies (TOFs) simultaneously with almost full conversion, excellent selectivity, and good stability. Here, we used metal–organic frameworks (MOFs) containing Zr metal nodes (“UiO”) with tunable wettability and electron-withdrawing ability as activity accelerators for the semihydrogenation of alkynes catalyzed by sandwiched palladium nanoparticles (Pd NPs). Impressively, the porous hydrophobic UiO support not only leads to an enrichment of phenylacetylene around the Pd NPs but also renders the Pd surfaces more electron-deficient, which leads to a remarkable catalysis performance, including an exceptionally high TOF of 13835 h−1, 100 % phenylacetylene conversion 93.1 % selectivity towards styrene, and no activity decay after successive catalytic cycles. The strategy of using molecularly tailored supports is universal for boosting the selective semihydrogenation of various terminal and internal alkynes.  相似文献   

11.
The dynamic interfacial tensions (IFTs) of enhanced oil recovery (EOR) surfactant/polymer systems against n-decane have been investigated using a spinning drop interfacial tensiometer in this paper. Two anionic–nonionic surfactants with different hydrophilic groups, C8PO6EO3S (6-3) and C8PO6EO6S (6-6), were selected as model surfactants. Partially hydrolyzed polyacrylamide (HPAM) and hydrophobically modified polyacrylamide (HMPAM) were employed. The influences of surfactant concentration, temperature, polymer concentration, and oleic acid in the oil on IFTs have been studied. The experimental results show that anionic–nonionic surfactants can form compact adsorption films and reach ultralow IFT (10?3 mN/m) under optimum conditions. The addition of polymer has great influence on dynamic IFTs between surfactant solutions and n-decane mainly by the formation of looser mixed films resulting from the penetration of polymer chains into the interface. The compact surfactant film will also be weakened by the competitive adsorption of oleic acid, which results in the increase of IFT. Moreover, the penetration of polymer chains will be further destroyed surfactant/polymer mixed layer and lead to the obvious increase of IFT. On the other hand, polymers show little effect on the IFTs of 6-6 systems than those of 6-3 because of the hindrance of longer EO chain of 6-6 at the interface.  相似文献   

12.
13.
A novel armor-type composite of metal–organic framework (MOF)-encapsulated CoCu nanoparticles with a Fe3O4 core (Fe3O4@SiO2-NH2-CoCu@UiO-66) has been designed and synthesized by the half-way injection method, which successfully serves as an efficient and recyclable catalyst for the selective transfer hydrogenation. In this half-way injection approach, the pre-synthetic Fe3O4@SiO2-NH2-CoCu was injected into the UiO-66 precursor solution halfway through the MOF budding period. The formed MOF armor could play a role of providing significant additional catalytic sites besides CoCu nanoparticles, protecting CoCu nanoparticles, and improving the catalyst stability, thus facilitating the selective transfer hydrogenation of nitrobenzaldehydes into corresponding nitrobenzyl alcohols in high selectivity (99 %) and conversion (99 %) rather than nitro group reduction products. Notably, this method achieves the precise assembly of a MOF-encapsulated composite, and the ingenious combination of MOF and nanoparticles exhibits excellent catalytic performance in the selective hydrogen transfer reaction, implementing a “1+1>2” strategy in catalysis.  相似文献   

14.
Russian Journal of Applied Chemistry - Formulation of an aqueous dispersion of F-40 tetrafluoroethylene–ethylene copolymer for applying metal–polymer coatings by cathodic...  相似文献   

15.
The applicability of Co(II), Ni(II), Fe(III), and Cr(III) ion labels to the immunochemical determination of ribonuclease, Candida albicans, Trichophyton rubrum, and Phoma betaeantigens was studied. The catalytic waves of hydrogen evolution, which occur in transition metal solutions in the presence of protein compounds, were used as analytical signals. The maximum catalytic effect depends on the pH, buffer capacity, and nature of buffer solution and on the nature of antigen to be determined. A new procedure was proposed for the immunochemical determination of the ribonuclease antigen using Co(II) ions as a label. The conditions of the formation and degradation of the antibody–antigen immune complex were found. The linear analytical range for the ribonuclease antigen was 0.005–1.0 mg/mL.  相似文献   

16.

In the present work, we proposed to create special sorbents for the study of protein–protein interactions, based on the fixation of cysteine-inserted beta-casein mutants with thiol-Sepharose resin. As a model system, we used bovine beta-casein, which belongs to the family of intrinsically unstructured proteins. Insertion of distal cysteines into the unfolded protein was not found to significantly change beta-casein properties. An amphiphilic beta-casein molecule has one hydrophilic domain and one hydrophobic domain placed on the N- and C-terminus, thus enabling one to exploit its capacity to engage in different types of intermolecular interactions. Two different casein-Sepharose sorbents incorporating either C-4 or C-208 beta-casein mutants bound to thiol-Sepharose were produced, exposing the hydrophobic domain in the case of the C-4 and the hydrophilic domain in the case of the C-208 mutant, respectively. The results obtained using the proposed sorbents with native beta-casein, another partially unfolded protein prion, and an oligomeric globular glyceraldehyde-3-phosphate dehydrogenase were found to be consistent with the data obtained by ELISA on free protein–protein complexes. Thus, Sepharose modified with various proteins is suitable for isolation of proteins interacting with the chromatographic phase bound partners from multicomponent systems such as milk. The obtained results allow the proposing of a fast and convenient method to be used for isolation of proteins, determination of protein-interacting partners, and the study of multi-protein complexes.

  相似文献   

17.
In the present work, we proposed to create special sorbents for the study of protein–protein interactions, based on the fixation of cysteine-inserted beta-casein mutants with thiol-Sepharose resin. As a model system, we used bovine beta-casein, which belongs to the family of intrinsically unstructured proteins. Insertion of distal cysteines into the unfolded protein was not found to significantly change beta-casein properties. An amphiphilic beta-casein molecule has one hydrophilic domain and one hydrophobic domain placed on the N- and C-terminus, thus enabling one to exploit its capacity to engage in different types of intermolecular interactions. Two different casein-Sepharose sorbents incorporating either C-4 or C-208 beta-casein mutants bound to thiol-Sepharose were produced, exposing the hydrophobic domain in the case of the C-4 and the hydrophilic domain in the case of the C-208 mutant, respectively. The results obtained using the proposed sorbents with native beta-casein, another partially unfolded protein prion, and an oligomeric globular glyceraldehyde-3-phosphate dehydrogenase were found to be consistent with the data obtained by ELISA on free protein–protein complexes. Thus, Sepharose modified with various proteins is suitable for isolation of proteins interacting with the chromatographic phase bound partners from multicomponent systems such as milk. The obtained results allow the proposing of a fast and convenient method to be used for isolation of proteins, determination of protein-interacting partners, and the study of multi-protein complexes.  相似文献   

18.
Precise control of the structure and spatial distance of Lewis acid (LA) and Lewis base (LB) sites in a porous system to construct efficient solid frustrated Lewis pair (FLP) catalyst is vital for industrial application but remains challenging. Herein, we constructed FLP sites in a polyoxometalate (POM)-based metal–organic framework (MOF) by introducing coordination-defect metal nodes (LA) and surface-basic POM with abundant oxygen (LB). The well-defined and unique spatial conformation of the defective POM-based MOF ensure that the distance between LA and LB is at ~4.3 Å, a suitable distance to activate H2. This FLP catalyst can heterolytically dissociate H2 into active Hδ−, thus exhibiting high activity in hydrogenation, which is 55 and 2.7 times as high as that of defect-free POM-based MOF and defective MOF without POM, respectively. This work provides a new avenue toward precise design multi-site catalyst to achieve specific activation of target substrate for synergistic catalysis.  相似文献   

19.
Discerning the origins of the phosphorescent aggregation-induced emission (AIE) from Pt(II) complexes is crucial for developing the broader range of photo-functional materials. Over the past few decades, several mechanisms of phosphorescent AIE have been proposed, however, not have been directly elucidated. Herein, we describe phosphorescence and deactivation processes of four class of AIE active Pt(II) complexes in the crystalline state based on experimental and theoretical investigation. These complexes show metal-to-ligand and/or metal−metal-to-ligand charge transfer emission in crystalline state with different heat resistance against thermal emission quenching. The calculated energy profiles including the minimum energy crossing point between S0 and T1 states were consistent with the heat resistant properties, which provided the mechanism for AIE expression. Furthermore, we have clarified the role of metal-metal interaction in AIE by comparing two computational models.  相似文献   

20.
Pt–Ni nanoframes (Pt–Ni NFs) exhibit outstanding catalytic properties for several reactions owing to the large numbers of exposed surface active sites, but its stability and selectivity need to be improved. Herein, an in situ method for construction of a core–shell structured Pt-Ni NF@Ni-MOF-74 is reported using Pt–Ni rhombic dodecahedral as self-sacrificial template. The obtained sample exhibits not only 100 % conversion for the selective hydrogenation of p-nitrostyrene to p-aminostyrene conducted at room temperature, but also good selectivity (92 %) and high stability (no activity loss after fifteen runs) during the reaction. This is attributed to the Ni-MOF-74 shell in situ formed in the preparation process, which can stabilize the evolved Pt–Ni NF and donate electrons to the Pt metals that facilitate the preferential adsorption of electrophilic NO2 group. This study opens up new vistas for the design of highly active, selective, and stable noble-metal-containing materials for selective hydrogenation reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号