首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Marine natural products   总被引:8,自引:0,他引:8  
This review covers the literature published in 2002 for marine natural products, with 579 citations (413 for the period January to December 2002) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (677 for 2002), together with their relevant biological activities, source organisms and country of origin. Syntheses that lead to the revision of structures or stereochemistries have been included (114), including any first total syntheses of a marine natural product.  相似文献   

2.
Marine natural products   总被引:8,自引:0,他引:8  
This review covers the literature published in 2001 for marine natural products, with 497 citations (373 for the period January to December 2001) and includes 793 compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds and new stereochemical assignments (683 for 2001), together with relevant biological activities, source organisms and country of origin. Syntheses that confirm or revise structures or stereochemistries have been included (95), including any first total synthesis of a marine natural product.  相似文献   

3.
Marine natural products   总被引:18,自引:0,他引:18  
This review covers the literature published in 2003 for marine natural products, with 619 citations (413 for the period January to December 2003) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (656 for 2003), together with their relevant biological activities, source organisms and country or origin. Biosynthetic studies or syntheses that lead to the revision of structures or stereochemistries have been included (78), including any first total syntheses of a marine natural product.  相似文献   

4.
This review covers the literature published in 2005 for marine natural products, with 704 citations (493 for the period January to December 2005) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (812 for 2005), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.  相似文献   

5.
Marine natural products   总被引:6,自引:0,他引:6  
This review covers the literature published in 2004 for marine natural products, with 693 citations (491 for the period January to December 2004) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, coelenterates, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (716 for 2004), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies (8), and syntheses (80), including those that lead to the revision of structures or stereochemistries, have been included.  相似文献   

6.
Marine natural products   总被引:5,自引:0,他引:5  
This review covers the literature published in 2006 for marine natural products, with 758 citations (534 for the period January to December 2006) referring to compounds isolated from marine microorganisms and phytoplankton, green algae, brown algae, red algae, sponges, cnidaria, bryozoans, molluscs, tunicates and echinoderms. The emphasis is on new compounds (779 for 2006), together with their relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.  相似文献   

7.
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.  相似文献   

8.
The authors' chemical studies on the secondary metabolites from marine organisms are summarized. From marine sponges, algae and soft corals grown in the South China Sea, thirty five compounds were isolated. Their structures were elucidated mainly on the basis of spectral evidence. The biological activities of dysamides, 1–6 , stelletin 21 and lactone 23 are reported.  相似文献   

9.
Marine organisms such as plants, algae or small animals can adhere to surfaces of materials that are submerged in ocean. The accumulation of these organisms on surfaces is a marine biofouling process that has considerable adverse effects. Marine biofouling on ship hulls can cause severe fuel consumption increase. Investigations on antifouling polymers are therefore becoming important research topics for marine vessel operations. Antifouling polymers can be applied as coating layers on the ship hull, protecting it against the settlement and growth of sea organisms. Polyethylene glycol (PEG) is a hydrophilic polymer that can effectively resist the accumulation of marine organisms. PEG-based antifouling coatings have therefore been extensively researched and developed. However, the inferior stability of PEG makes it subject to degradation, rendering it ineffective for long-term services. Zwitterionic polymers have also emerged as promising antifouling materials in recent years. These polymers consist of both positively charged and negatively charged functional groups. Various zwitterionic polymers have been demonstrated to exhibit exceptional antifouling properties. Previously, surface characterizations of zwitterionic polymers have revealed that strong surface hydration is critical for their antifouling properties. In addition to these hydrophilic polymers, amphiphilic materials have also been developed as potential antifouling coatings. Both hydrophobic and hydrophilic functional groups are incorporated into the backbones or sidechains of these polymers. It has been demonstrated that the antifouling performance can be enhanced by precisely controlling the sequence of the hydrophobic-hydrophilic functionalities. Since biofouling generally occurs at the outer surface of the coatings, the antifouling properties of these coatings are closely related to their surface characteristics in water. Therefore, understanding of the surface molecular structures of antifouling materials is imperative for their future developments. In this review, we will summarize our recent advancements of antifouling material surface analysis using sum frequency generation (SFG) vibrational spectroscopy. SFG is a surface-sensitive technique which can provide molecular information of water and polymer structures at interfaces in situ in real time. The antifouling polymers we will review include zwitterionic polymer brushes, mixed charged polymers, and amphiphilic polypeptoids. Interfacial hydration studies of these polymers by SFG will be presented. The salt effect on antifouling polymer surface hydration will also be discussed. In addition, the interactions between antifouling materials and protein molecules as well as algae will be reviewed. The above research clearly established strong correlations between strong surface hydration and good antifouling properties. It also demonstrated that SFG is a powerful technique to provide molecular level understanding of polymer antifouling mechanisms.  相似文献   

10.
A type of grafted acrylate copolymer resins, containing 3-oxo-N-allyl-1,2-benzisothiazole-2(3H)-carboxamide monomer and heterocyclic monomers, was synthesized through the copolymeri- zation of methyl methacrylate (MMA) and butyl acrylate (BA) with functional monomers. The structures of the monomers and copolymers were validated by infrared (IR) and 1H nuclear magnetic resonance (NMR) spectroscopies. The inhibitory activities of the copolymers on algae, bacteria, and barnacle larvae were measured, and the antifouling potencies against marine macrofouling organisms were investigated. The results showed that the grafted resin had significant inhibitory effects on the growth of three marine algae (Isochrysis galbana, Nannochloropsisoculata, and Chlorella pyrenoidosa), and three bacteria (Vibrio coralliilyticus, Staphylococcus aureus,and Vibrio parahaemolyticus). The target copolymers also showed excellent inhibition of the survival of barnacle larvae. Additionally, the release rate of the antifoulant and the results of the marine field tests indicated that the grafted copolymers had outstanding antifouling potency against the attachment of marine macrofouling organisms.  相似文献   

11.
龙康侯  林永成 《有机化学》1985,5(5):369-375
八十年代以来,海洋天然有机化学仍然继续发展,大量新的化合物,尤其是具有生理活性的化合物不断出现,海洋天然物的生物合成和人工合成研究也有新的进展。在海洋生物中,研究得最多的是海藻和海绵,其次便是珊瑚。  相似文献   

12.
The cell wall of brown algae contains alginate as a major constituent. This anionic polymer is a composite of β-d-mannuronate (M) and α-l-guluronate (G). Alginate can be degraded into oligosaccharides; both the polymer and its products exhibit antioxidative, antimicrobial, and immunomodulatory activities and, hence, find many commercial applications. Alginate is attacked by various enzymes, collectively termed alginate lyases, that degrade glycosidic bonds through β-elimination. Considering the abundance of brown algae in marine ecosystems, alginate is an important source of nutrients for marine organisms, and therefore, alginate lyases play a significant role in marine carbon recycling. Various marine microorganisms, particularly those that thrive in association with brown algae, have been reported as producers of alginate lyases. Conceivably, the marine-derived alginate lyases demonstrate salt tolerance, and many are activated in the presence of salts and, therefore, find applications in the food industry. Therefore, this review summarizes the structural and biochemical features of marine bacterial alginate lyases along with their applications. This comprehensive information can aid in the expansion of future prospects of alginate lyases.  相似文献   

13.
In addition to cancer and diabetes, inflammatory and ROS-related diseases represent one of the major health problems worldwide. Currently, several synthetic drugs are used to reduce oxidative stress; nevertheless, these approaches often have side effects. Therefore, to overcome these issues, the search for alternative therapies has gained importance in recent times. Natural bioactive compounds have represented, and they still do, an important source of drugs with high therapeutic efficacy. In the “synthetic” era, terrestrial and aquatic photosynthetic organisms have been shown to be an essential source of natural compounds, some of which might play a leading role in pharmaceutical drug development. Marine organisms constitute nearly half of the worldwide biodiversity. In the marine environment, algae, seaweeds, and seagrasses are the first reported sources of marine natural products for discovering novel pharmacophores. The algal bioactive compounds are a potential source of novel antioxidant and anticancer (through modulation of the cell cycle, metastasis, and apoptosis) compounds. Secondary metabolites in marine Algae, such as phenolic acids, flavonoids, and tannins, could have great therapeutic implications against several diseases. In this context, this review focuses on the diversity of functional compounds extracted from algae and their potential beneficial effects in fighting cancer, diabetes, and inflammatory diseases.  相似文献   

14.
A method is presented which is sensitive enough for the determination of vanadium (V) in marine organisms such as mussels and algae. It was sufficiently checked by a reference material and it was applied to V determination in blue mussels and brown algae from the German Bight.  相似文献   

15.
A method using high-performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) has been developed to determine inorganic arsenic (arsenite, arsenate) along with organic arsenic compounds (monomethylarsonic acid, dimethylarsinic acid, arsenobetaine, arsenocholine, trimethylarsine oxide, tetramethylarsonium ion and several arsenosugars) in fish, mussel, oyster and marine algae samples. The species were extracted by means of a methanol/water mixture and a dispersion unit in 2 min, with extraction efficiencies ranging from 83 to 107% in the different organisms. Up to 17 different species were determined within 15 min on an anion-exchange column, using a nitric acid gradient and an ion-pairing reagent. As all species are shown in one chromatogram, a clear overview of arsenic distribution patterns in different marine organisms is given. Arsenobetaine is the major compound in marine animals whereas arsenosugars and arsenate are dominant in marine algae. The method was validated with CRM DORM-2 (dogfish muscle). Concentrations were within the certified limits and low detection limits of 8 ng g(-1) (arsenite) to 50 ng g(-1) (arsenate) were obtained.  相似文献   

16.
A method is presented which is sensitive enough for the determination of vanadium (V) in marine organisms such as mussels and algae. It was sufficiently checked by a reference material and it was applied to V determination in blue mussels and brown algae from the German Bight. Received: 28 July 1999 / Revised: 1 November 1999 / Accepted: 1 November 1999  相似文献   

17.
The alarming increase in the global cancer death toll has fueled the quest for new effective anti-tumor drugs thorough biological screening of both terrestrial and marine organisms. Several plant-derived alkaloids are leading drugs in the treatment of different types of cancer and many are now being tested in various phases of clinical trials. Recently, marine-derived alkaloids, isolated from aquatic fungi, cyanobacteria, sponges, algae, and tunicates, have been found to also exhibit various anti-cancer activities including anti-angiogenic, anti-proliferative, inhibition of topoisomerase activities and tubulin polymerization, and induction of apoptosis and cytotoxicity. Two tunicate-derived alkaloids, aplidin and trabectedin, offer promising drug profiles, and are currently in phase II clinical trials against several solid and hematologic tumors. This review sheds light on the rich array of anti-cancer alkaloids in the marine ecosystem and introduces the most investigated compounds and their mechanisms of action.  相似文献   

18.
Covering: 1972 to 2011. This review covers the literature of prenylated quinone, hydroquinone and naphthoquinone marine natural products with reported cytotoxic and/or antioxidant properties. The structures, biological activity and, where applicable, the syntheses of 159 cytotoxic/antioxidant compounds, isolated from various marine organisms, are presented, while trends in the distribution of these cytotoxic metabolites, across the different marine phyla, are highlighted. Marine prenylated quinones, hydroquinones and naphthoquinones are of mixed polyketide and terpenoid biogenesis and recent biosynthetic studies of selected compounds are discussed.  相似文献   

19.
Marine organisms are able to produce a plethora of small molecules with novel chemical structures and potent biological properties, being a fertile source for discovery of pharmacologically active compounds, already with several marine-derived agents approved as drugs. Glioma is classified by the WHO as the most common and aggressive form of tumor on CNS. Currently, Temozolomide is the only chemotherapeutic option approved by the FDA even though having some limitations. This review presents, for the first time, a comprehensive overview of marine compounds described as anti-glioma agents in the last decade. Nearly fifty compounds were compiled in this document and organized accordingly to their marine sources. Highlights on the mechanism of action and ADME properties were included. Some of these marine compounds could be promising leads for the discovery of new therapeutic alternatives for glioma treatment.  相似文献   

20.
Bioprospecting for new marine natural products (NPs) has increased significantly over the last decades, leading to an unprecedented discovery of new molecules. Marine invertebrates have been the most important source of these NPs, with researchers commonly targeting particular taxonomic groups, marine regions and/or molecules from specific chemical groups. The present review focuses on new NPs identified from marine invertebrates between 2000 and 2009, and performs a detailed analysis on: (1) the chemical groups of these NPs; (2) the association of particular chemical groups to specific marine invertebrate taxa; and (3) the yielding of molecules from the same chemical group from organisms occurring in a particular geographic region. Our survey revealed an increasing number of new terpenoids being discovered between 2000 and 2009, contrasting with the decreasing trend in the discovery of new alkaloids and aliphatic molecules. Overall, no particular association was identified between marine invertebrate taxa and chemical groups of new NPs. Nonetheless, it is worth noting that most NPs recorded from cnidarians and mollusks were terpenoids, while most NPs identified in echinoderms were aliphatic compounds or carbohydrates. The geographical trends observed in our study do not support the idea of particular chemical groups of new NPs being associated with marine invertebrates from any specific geographical region, as NPs from different chemical groups were commonly distributed worldwide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号