首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.  相似文献   

2.
We present the results of a detailed study on structure and electronic properties of hydrated cluster Cl2*-.nH2O (n = 1-7) based on a nonlocal density functional, namely, Becke's [J. Chem. Phys. 98, 1372 (1993)] half and half hybrid exchange-correlation functional with a split valence 6-311++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with various possible initial guess structures without any symmetry restriction. Several minimum energy structures (conformers) are predicted with a small difference in total energy. There is a competition between the binding of solvent H2O units with Cl2*- dimer radical anion directly through ion-molecule interaction and forming interwater hydrogen-bonding network in Cl2*-.nH2O (n > or = 2) hydrated cluster. Structure having interwater H-bonded network is more stable over the structure where H2O units are connected to the solute dimer radical anion Cl2*- rather independently either by single or double H bonding in a particular size (n) of hydrated cluster Cl2*-.nH2O. At the maximum four solvent H2O units reside in interwater H-bonding network present in these hydrated clusters. It is observed that up to six H2O units are independently linked to the anion having four double H bondings and two single H bondings suggesting the primary hydration number of Cl2*- to be 6. In all these clusters, the odd electron is found to be mostly localized over the two Cl atoms and these two atoms are bound by a three-electron hemibond. Calculated interaction (between solute and different water clusters) and vertical detachment energy profiles show saturation at n = 6 in the hydrated cluster Cl2*-.nH2O (n = 1-7). However, calculated solvation energy increases with the increase in number of solvent H2O molecules in the cluster. Interaction energy varies linearly with vertical detachment energy for the hydrated clusters Cl2*-.nH2O (n < or = 6). Calculation of the vibration frequencies show that the formation of Cl2*(-)-water clusters induces significant shifts from the normal stretching modes of isolated water. A clear difference in the pattern of IR spectra is observed in the O-H stretching region of water from hexa- to heptahydrated cluster.  相似文献   

3.
A systematic study on the structure and stability of nitrate anion hydrated clusters, NO3(-) x n H2O (n = 1-8) are carried out by applying first principle electronic structure methods. Several possible initial structures are considered for each size cluster to locate equilibrium geometry by applying a correlated hybrid density functional with 6-311++G(d,p) basis function. Three different types of arrangements, namely, symmetrical double hydrogen bonding, single hydrogen bonding and inter-water hydrogen bonding are obtained in these hydrated clusters. A structure having inter-water hydrogen bonding is more stable compared to other arrangements. Surface structures are predicted to be more stable over interior structures. Up to five solvent H2O molecules can stay around solute NO3(-) anion in structures having an inter-water hydrogen-bonded cyclic network. A linear correlation is obtained for weighted average solvent stabilization energy with the size (n) of the hydrated cluster. Distinctly different shifts of IR bands are observed in these hydrated clusters for different kinds of bonding environments of O-H and N=O stretching modes compared to isolated H2O and NO3(-) anion. Weighted average IR spectra are calculated on the basis of statistical population of individual configurations of each size cluster at 150 K.  相似文献   

4.
Clusters of Cu (2+)(H 2O) n , n = 6-12, formed by electrospray ionization, are investigated using infrared photodissociation spectroscopy, blackbody infrared radiative dissociation (BIRD), and density functional theory of select clusters. At 298 K, the BIRD rate constants increase with increasing cluster size for n >or= 8, but the trend reverses for the smaller clusters where Cu (2+)(H 2O) 6 is less stable than Cu (2+)(H 2O) 8. This trend in stability is consistent with a change in fragmentation pathway from loss of a water molecule for clusters with n >or= 9 to loss of hydrated protonated water clusters and the formation of the corresponding singly charged hydrated metal hydroxide for n 相似文献   

5.
Cationic water clusters containing iodine, of the composition I(H2O)n+, n = 0-25, are generated in a laser vaporization source and investigated by FT-ICR mass spectrometry. An investigation of blackbody radiation-induced fragmentation of size-selected clusters I(H2O)n+, n = 3-15, under collision-free conditions revealed an overall linear increase of the unimolecular rate constant with cluster size, similar to what has been observed previously for other hydrated ions. Above a certain critical size, I(H2O)n+, n greater than or approx. 13, reacts with HCl by formation of the interhalide ICl and a protonated water cluster, which is the reverse of a known solution-phase reaction. Accompanying density functional calculations illustrate the conceptual differences between cationic and anionic iodine-water clusters I(H2O)n+/-. While I-(H2O)n is genuinely a hydrated iodide ion, the cationic closed-shell species I(H2O)n+ may be best viewed as a protonated water cluster, in which one water molecule is replaced by hypoiodous acid. In the strongly acidic environment, HOI is protonated because of its high proton affinity. However, similar to the well-known H3O+/H5O2+ controversy in protonated water clusters, a smooth transition between H2IO+ and H4IO2+ as core ions is observed for different cluster sizes.  相似文献   

6.
Ab initio and density functional methods have been used to examine the structures and energetics of the hydrated clusters of methane sulfonic acid (MSA), CH3SO3H.(H2O)n (n = 1-5). For small clusters with one or two water molecules, the most stable clusters have strong cyclic hydrogen bonds between the proton of OH group in MSA and the water molecules. With three or more water molecules, the proton transfer from MSA to water becomes possible, forming ion-pair structures between CH3SO3- and H3O+ moieties. For MSA.(H2O)3, the energy difference between the most stable ion pair and neutral structures are less than 1 kJ/mol, thus coexistence of neutral and ion-pair isomers are expected. For larger clusters with four and five water molecules, the ion-pair isomers are more stable (>10 kJ/mol) than the neutral ones; thus, proton transfer takes place. The ion-pair clusters can have direct hydrogen bond between CH3SO3- and H3O+ or indirect one through water molecule. For MSA.(H2O)5, the energy difference between ion pairs with direct and indirect hydrogen bonds are less than 1 kJ/mol; namely, the charge separation and acid ionization is energetically possible. The calculated IR spectra of stable isomers of MSA.(H2O)n clusters clearly demonstrate the significant red shift of OH stretching of MSA and hydrogen-bonded OH stretching of water molecules as the size of cluster increases.  相似文献   

7.
The authors report theoretical results on structure, bonding, energy, and infrared spectra of iodine dimer radical anion hydrated clusters, I(2) (-).nH(2)O (n=1-8), based on a systematic study following density functional theory. Several initial guess structures are considered for each size cluster to locate minimum energy conformers with a Gaussian 6-311++G(d,p) split valence basis function (triple split valence 6-311 basis set is applied for iodine). It is observed that three different types of hydrogen bonded structures, namely, symmetrical double hydrogen bonding, single hydrogen bonding, and interwater hydrogen bonding structures, are possible in these hydrated clusters. But conformers having interwater hydrogen bonding arrangements are more stable compared to those of double or single hydrogen bonded structures. It is also noticed that up to four solvent H(2)O units can reside around the solute in interwater hydrogen bonding network. At the maximum six H(2)O units are independently linked to the dimer anion having four double hydrogen bonding and two single hydrogen bonding, suggesting the hydration number of I(2) (-) to be 6. However, conformers having H(2)O units independently linked to the iodine dimer anion are not the most stable structures. In all these hydrated clusters, the odd electron is found to be localized over two I atoms and the two atoms are bound by a three-electron hemi bond. The solvation, interaction, and vertical detachment energies are calculated for all I(2) (-).nH(2)O clusters. Energy of interaction and vertical detachment energy profiles show stepwise saturation, indicating geometrical shell closing in the hydrated clusters, but solvation energy profile fails to show such behavior. A linear correlation is observed between the calculated energy of interaction and vertical detachment energy. It is observed that formation of I(2) (-)-water cluster induces significant shifts from the normal O-H stretching modes of isolated H(2)O. However, bending mode of H(2)O remains insensitive to the successive addition of solvent H(2)O units. Weighted average energy profiles and IR spectra are reported for all the hydrated clusters based on the statistical population of individual conformers at room temperature.  相似文献   

8.
An efficient mixed molecular dynamics/quantum mechanics model has been applied to the water cluster system. The use of the MP2 method and correlation consistent basis sets, with appropriate correction for BSSE, allows for the accurate calculation of electronic and free energies for the formation of clusters of 2-10 water molecules. This approach reveals new low energy conformers for (H(2)O)(n=7,9,10). The water heptamer conformers comprise five different structural motifs ranging from a three-dimensional prism to a quasi-planar book structure. A prism-like structure is favored energetically at low temperatures, but a chair-like structure is the global Gibbs free energy minimum past 200 K. The water nonamers exhibit less complexity with all the low energy structures shaped like a prism. The decamer has 30 conformers that are within 2 kcal/mol of the Gibbs free energy minimum structure at 298 K. These structures are categorized into four conformer classes, and a pentagonal prism is the most stable structure from 0 to 320 K. Results can be used as benchmark values for empirical water models and density functionals, and the method can be applied to larger water clusters.  相似文献   

9.
Structure, energy enthalpy, and IR frequency of hydrated cesium ion clusters, Cs+-(H2O)n (n=1-10), are reported based on all electron calculations. Calculations have been carried out with a hybrid density functional, namely, Becke's three-parameter nonlocal hybrid exchange-correlation functional B3LYP applying cc-PVDZ correlated basis function for H and O atoms and a split valence 3-21G basis function for Cs atom. Geometry optimizations for all the cesium ion-water clusters have been carried out with several possible initial guess structures following Newton-Raphson procedure leading to many conformers close in energy. The calculated values of binding enthalpy obtained from present density functional based all electron calculations are in good agreement with the available measured data. Binding enthalpy profile of the hydrated clusters shows a saturation behavior indicating geometrical shell closing in hydrated structure. Significant shifts of O-H stretching bands with respect to free water molecule in IR spectra of hydrated clusters are observed in all the hydrated clusters.  相似文献   

10.
Structure and properties of hydrated clusters of halogen gas, X2.nH2O (X = Cl, Br, and I; n = 1-8) are presented following first principle based electronic structure theory, namely, BHHLYP density functional and second-order Moller-Plesset perturbation (MP2) methods. Several geometrical arrangements are considered as initial guess structures to look for the minimum energy equilibrium structures by applying the 6-311++G(d,p) set of the basis function. Results on X2-water clusters (X = Br and I) suggest that X2 exists as a charge separated ion pair, X+delta-X-delta in the hydrated clusters, X2.nH2O (n > or = 2). Though the optimized structures of Cl2.nH2O clusters look like X2.nH2O (X = Br and I) clusters, Cl2 does not exist as a charge separated ion pair in the presence of solvent water molecules. The calculated interaction energy between X2 and solvent water cluster increases from Cl2.nH2O to I2.nH2O clusters, suggesting solubility of gas-phase I2 in water to be a maximum among these three systems. Static and dynamic polarizabilities of hydrated X2 clusters, X2.nH2O, are calculated and observed to vary linearly with the size (n) of these water clusters with correlation coefficient >0.999. This suggests that the polarizability of the larger size hydrated clusters can be reliably predicted. Static and dynamic polarizabilities of these hydrated clusters grow exponentially with the frequency of an external applied field for a particular size (n) of hydrated cluster.  相似文献   

11.
The structure of dibenzo-18-crown-6-ether (DB18C6) and its hydrated clusters has been investigated in a supersonic jet. Two conformers of bare DB18C6 and six hydrated clusters (DB18C6-(H(2)O)(n)) were identified by laser-induced fluorescence, fluorescence-detected UV-UV hole-burning and IR-UV double-resonance spectroscopy. The IR-UV double resonance spectra were compared with the IR spectra obtained by quantum chemical calculations at the B3LYP/6-31+G* level. The two conformers of bare DB18C6 are assigned to "boat" and "chair I" forms, respectively, among which the boat form is dominant. All the six DB18C6-(H(2)O)(n) clusters with n = 1-4 have a boat conformation in the DB18C6 part. The water molecules form a variety of hydration networks in the boat-DB18C6 cavity. In DB18C6-(H(2)O)(1), a water molecule forms the bidentate hydrogen bond with the O atoms adjacent to the benzene rings. In this cluster, the water molecule is preferentially hydrogen bonded from the bottom of boat-DB18C6. In the larger clusters, the hydration networks are developed on the basis of the DB18C6-(H(2)O)(1) cluster.  相似文献   

12.
van der Waals cluster (SO2)n is investigated by using single photon ionization of a 26.5 eV soft x-ray laser. During the ionization process, neutral clusters suffer a small fragmentation because almost all energy is taken away by the photoelectron and a small part of the photon energy is deposited into the (SO2)n cluster. The distribution of (SO2)n clusters decreases roughly exponentially with increasing cluster size. The photoionization dissociation fraction of I[(SO2)(n-1)SO+] / I[(SO2)n+] decreases with increasing cluster size due to the formation of cluster. The metastable dissociation rate constants of (SO2)n+ are measured in the range of (0.6-1.5) x 10(4) s(-1) for cluster sizes 5< or =n< or =16. Mixed SO2-H2O clusters are studied at different experimental conditions. At the condition of high SO2 concentration (20% SO2 partial pressure), (SO2)n+ cluster ions dominate the mass spectrum, and the unprotonated mixed cluster ions (SO2)nH2O+ (1< or =n< or =5) are observed. At the condition of low SO2 concentration (5% SO2 partial pressure) (H2O)nH+ cluster ions are the dominant signals, and protonated cluster ions (SO2)(H2O)nH+ are observed. The mixed clusters, containing only one SO2 or H2O molecule, SO2(H2O)nH+ and (SO2)nH2O+ are observed, respectively.  相似文献   

13.
A concerted experimental (mass-selective, double-resonance laser spectroscopic technique) and theoretical (correlated quantum chemistry calculation) study of hydrogen-bonded clusters of 1-cyanonaphthalene (CNN) with water has been carried out to probe geometrical structures of the conformational isomers. The structures of the two low-energy conformers of CNN-H2O and CNN-(H2O)2, calculated at the MP2/cc-pVDZ level of theory, are consistent with the mass-selective infrared-ultraviolet double-resonance spectra and the partially resolved rotational band contours of the S1 <-- S0 origin bands. The facile loss of a neutral water molecule from the cluster ion of CNN-(H2O)2, relative to that of CNN-H2O, is in accord with the proposed structures of the clusters.  相似文献   

14.
Here we report ion mobility experiments and theoretical studies aimed at elucidating the identity of the acetylene dimer cation and its hydrated structures. The mobility measurement indicates the presence of more than one isomer for the C(4)H(4)(●+) ion in the cluster beam. The measured average collision cross section of the C(4)H(4)(●+) isomers in helium (38.9 ± 1 A?(2)) is consistent with the calculated cross sections of the four most stable covalent structures calculated for the C(4)H(4)(●+) ion [methylenecyclopropene (39.9 A?(2)), 1,2,3-butatriene (41.1 A?(2)), cyclobutadiene (38.6 A?(2)), and vinyl acetylene (41.1 A?(2))]. However, none of the single isomers is able to reproduce the experimental arrival time distribution of the C(4)H(4)(●+) ion. Combinations of cyclobutadiene and vinyl acetylene isomers show excellent agreement with the experimental mobility profile and the measured collision cross section. The fragment ions obtained by the dissociation of the C(4)H(4)(●+) ion are consistent with the cyclobutadiene structure in agreement with the vibrational predissociation spectrum of the acetylene dimer cation (C(2)H(2))(2)(●+) [R. A. Relph, J. C. Bopp, J. R. Roscioli, and M. A. Johnson, J. Chem. Phys. 131, 114305 (2009)]. The stepwise hydration experiments show that dissociative proton transfer reactions occur within the C(4)H(4)(●+)(H(2)O)(n) clusters with n ≥ 3 resulting in the formation of protonated water clusters. The measured binding energy of the C(4)H(4)(●+)H(2)O cluster, 38.7 ± 4 kJ/mol, is in excellent agreement with the G3(MP2) calculated binding energy of cyclobutadiene(●+)·H(2)O cluster (41 kJ/mol). The binding energies of the C(4)H(4)(●+)(H(2)O)(n) clusters change little from n = 1 to 5 (39-48 kJ/mol) suggesting the presence of multiple binding sites with comparable energies for the water-C(4)H(4)(●+) and water-water interactions. A significant entropy loss is measured for the addition of the fifth water molecule suggesting a structure with restrained water molecules, probably a cyclic water pentamer within the C(4)H(4)(●+)(H(2)O)(5) cluster. Consequently, a drop in the binding energy of the sixth water molecule is observed suggesting a structure in which the sixth water molecule interacts weakly with the C(4)H(4)(●+)(H(2)O)(5) cluster presumably consisting of a cyclobutadiene(●+) cation hydrogen bonded to a cyclic water pentamer. The combination of ion mobility, dissociation, and hydration experiments in conjunction with the theoretical calculations provides strong evidence that the (C(2)H(2))(2)(●+) ions are predominantly present as the cyclobutadiene cation with some contribution from the vinyl acetylene cation.  相似文献   

15.
Pure neutral (CO2)n clusters and mixed (CO2)n(H2O)m clusters are investigated employing time of flight mass spectroscopy and single photon ionization at 26.5 eV. The distribution of pure (CO2)n clusters decreases roughly exponentially with increasing cluster size. During the ionization process, neutral clusters suffer little fragmentation because almost all excess cluster energy above the vertical ionization energy is taken away by the photoelectron and only a small part of the photon energy is deposited into the (CO2)n cluster. Metastable dissociation rate constants of (CO2)n+ are measured in the range of (0.2-1.5) x 10(4) s(-1) for cluster sizes of 5< or =n< or =16. Mixed CO2-H2O clusters are studied under different generation conditions (5% and 20% CO2 partial pressures and high and low expansion pressures). At high CO2 concentration, predominant signals in the mass spectrum are the (CO2)n+ cluster ions. The unprotonated cluster ion series (CO2)nH2O+ and (CO2)n(H2O)2+ are also observed under these conditions. At low CO2 concentration, protonated cluster ions (H2O)nH+ are the dominant signals, and the protonated CO2(H2O)nH+ and unprotonated (H2O)n+ and (CO2)(H2O)n+ cluster ion series are also observed. The mechanisms and dynamics of the formation of these neutral and ionic clusters are discussed.  相似文献   

16.
The work presents ab initio results on structure and electronic properties of Br2*-.nH2O(n=1-10) and Br2.nH2O(n=1-8) hydrated clusters to study the effects of an excess electron on the microhydration of the halide dimer. A nonlocal density functional, namely, Becke's half-and-half hybrid exchange-correlation functional is found to perform well on the present systems with a split valence 6-31++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with several initial guess structures and without imposing any symmetry restriction. Br2*-.nH2O clusters prefer to have symmetrical double hydrogen-bonding structures. Results on Br2.nH2O(n>or=2) cluster show that the O atom of one H2O is oriented towards one Br atom and the H atom of another H2O is directed to other Br atom making Br2 to exist as Br+-Br- entity in the cluster. The binding and solvation energies are calculated for the Br2*-.nH2O and Br2.nH2O clusters. Calculations of the vibrational frequencies show that the formation of Br2*- and Br2 water clusters induces significant shifts from the normal modes of isolated water. Excited-state calculations are carried out on Br2*-.nH2O clusters following configuration interaction with single electron excitation procedure and UV-VIS absorption profiles are simulated. There is an excellent agreement between the present theoretical UV-VIS spectra of Br2*-.10H2O cluster and the reported transient optical spectra for Br2*- in aqueous solution.  相似文献   

17.
First principles electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure, and the binding energy of [Au(H2O)n]+ clusters containing up to 10 H2O molecules. It is shown that the first coordination shell of Au+ contains two H2O molecules forming a H2O-Au+-H2O structure with C2 symmetry. Subsequent H2O molecules bind to the previous H2O molecules forming stable and fairly rigid rings, each composed of 4 H2O molecules, and leading to a dumbbell structure at [Au(H2O)8]+. The 9th and the 10th H2O molecules occupy locations above the Au+ cation mainly bonded to one H2O from each ring, leading to structures where the side rings are partially distorted and forming structures that resemble droplet formation around the Au+ cation. The investigations highlight quantum effects in nucleation at small sizes and provide a microscopic understanding of the observed incremental binding energy deduced from collision induced dissociation that indicates that [Au(H2O)n]+ clusters with 7-10 H2O molecules have comparable binding energy. The charge on the Au+ is shown to migrate to the outside H2O molecules, suggesting an interesting screening phenomenon.  相似文献   

18.
The flexible prototype molecule 2-phenylethanol (2-PE) and its singly hydrated complex have been investigated in a cold supersonic beam by a combination of high-resolution two-color R2PI spectroscopy and quantum chemistry ab initio calculations. The existence of two monomer structures separated by a high potential energy barrier, gauche and anti ones, was proven. Higher energy conformers are supposed to relax to the observed ones during the jet expansion process. We have identified the conformational structure of the complex between 2-PE and water, which corresponds to water binding to the most stable gauche conformer. No detectable structural changes of the host 2-PE molecule have been observed upon attachment of a single water molecule. A conformational relaxation mechanism is suggested also for the 2-PE x H2O complex.  相似文献   

19.
The structure and growth trend of the protonated acetophenone-water clusters have been investigated using the DFT-B3LYP method combined with the standard 6-31+G(d,p) basis set. In order to obtain more accurate single-point energy the B3LYP/6-311++G(3df,2p) method was adapted. The results show that the formation of H+C8H8O-H2O is a barrierless reaction process and the equilibrium distance between the proton and the O atom in C8H8O molecule is 1.015 A. For H+C8H8O-(H2O)n(n=1,2,3) clusters, the proton lies between the acetophenone molecule C8H8O and the water molecule H2O. The distance between the proton and the O atom of the C8H8O molecule increased from n=1 to n=3; C8H8O-H+-H2O can be regarded as an solvation shell. For H+C8H8O (H2O)n (n=4,5,6,7,8) clusters, the proton lies between the two H2O molecules forming a H5O2+ structure, C8H8O-H5O2+ is an important structure, which the other H2O molecules will attack from different sides.  相似文献   

20.
The authors present theoretical results describing the adsorption of H2 and H2S molecules on small neutral and cationic gold clusters (Au(n)((0/+1)), n=1-8) using density functional theory with the generalized gradient approximation. Lowest energy structures of the gold clusters along with their isomers are considered in the optimization process for molecular adsorption. The adsorption energies of H2S molecule on the cationic clusters are generally greater than those on the corresponding neutral clusters. These are also greater than the H2 adsorption energies on the corresponding cationic and neutral clusters. The adsorption energies for cationic clusters decrease with increasing cluster size. This fact is reflected in the elongations of the Au-S and Au-H bonds indicating weak adsorption as the cluster grows. In most cases, the geometry of the lowest energy gold cluster remains planar even after the adsorption. In addition, the adsorbed molecule gets adjusted such that its center of mass lies on the plane of the gold cluster. Study of the orbital charge density of the gold adsorbed H2S molecule reveals that conduction is possible through molecular orbitals other than the lowest unoccupied molecular orbital level. The dissociation of the cationic Au(n)SH2+ cluster into Au(n)S+ and H2 is preferred over the dissociation into Au(m)SH2+ and Au(n-m), where n=2-8 and m=1-(n-1). H2S adsorbed clusters with odd number of gold atoms are more stable than neighboring even n clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号