首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfated zirconia catalysts were prepared by sol-gel method using CH3COOH as in situ water source to control hydrolysis of alkoxide, and following two sulfation procedures. The samples were characterized by N2 adsorption, XRD, chemical analysis, and the activity for isomerization of n-hexane was assessed. It was found that sulfation procedure and the amount of acetic acid added exert a great influence on the catalysts properties. Mixture of sulfuric acid with zirconium propoxide before addition of acetic acid allows the retention of a larger amount of sulfur after calcination and enhances catalytic performances of sulfated zirconia. The use of CH3COOH reduces the rate of hydrolysis, and improves considerably acidic and catalytic properties.  相似文献   

2.
采用共沉淀的方法制备了不同Fe 掺杂量的SO42-/SnO2-Fe2O3固体超强酸催化剂. 利用傅里叶变换红外(FTIR)光谱, 粉末X射线衍射(XRD), N2吸附-脱附实验(BET), 热重(TG)分析和扫描电镜(SEM)等方法对样品进行了表征. 考察了所得催化剂对4-叔丁基环己酮与乙二醇缩合反应的催化性能. 实验结果表明, 与未经过掺杂改性的SO42-/SnO2固体酸催化剂相比, 改性后催化剂的催化性能得到了改善. 研究了以Fe/Sn 摩尔比为0.5的SO42-/SnO2-Fe2O3固体酸为催化剂, 部分醛酮类化合物与乙二醇及1,2-丙二醇的缩合反应. 考察了反应时间、催化剂用量等因素对反应的影响. 同时, 将所得催化剂应用于环酮Baeyer-Villiger 氧化反应中, 催化剂表现出良好的催化活性, 且催化剂具有一定的循环使用性.  相似文献   

3.
Direct catalytic propane dehydrogenation (PDH) to obtain propylene is a more economical and environmentally friendly route for propylene production. In particular, alumina-supported Cr2O3 catalysts can have better potential applications if the acidic properties could be tuned. Herein, a series of rod-shaped porous alumina were prepared through a hydrothermal route, followed by calcination. It was found that the acidity of the synthesized alumina was generally lower than that of the commercial alumina and could be adjusted well by varying the calcination temperature. Such alumina materials were used as supports for active Cr2O3, and the obtained catalysts could enhance the resistance to coke formation associated with similar activity in PDH reaction compared to the commercial alumina. The amount of coke deposited on a self-made catalyst (Cr-Al-800) was 3.6%, which was much lower than that deposited on the reference catalyst (15.7%). The lower acidity of the catalyst inhibited the side reactions and coke formation during the PDH process, which was beneficial for its high activity and superior anti-coking properties.  相似文献   

4.
The effect of calcination conditions on MoO3/SiO2 catalysts for the synthesis of methylphenyl carbonate was investigated in terms of catalytic activities and surface properties. The calcination temperature was varied in the range of 300 to 800oC. These calcination conditions have shown a close relationship with the catalyst activities. The optimal calcination temperature of MoO3/SiO2was found to be around 550-600oC. The catalysts were characterized by XRD, SEM, FT-IR and XPS analysis.  相似文献   

5.
A La-modified Al2O3 catalyst was prepared with deposition-precipitation method. The effect of calcination temperature on the reactivity for vapor phase hydrofluorination of acetylene to vinyl fluoride. The catalysts calcined at different temperatures were characterized using NH3-TPD, pyridine-FTIR, X-ray diffraction, and Raman techniques. It was found that the calcination process could not only change the structure of these catalysts but also modify the amount of surface acidity on the catalysts. The catalyst calcined at 400 oC exhibited the highest conversion of acetylene (94.6%) and highest selectivity to vinyl fluoride (83.4%) and lower coke deposition selectivity (0.72%). The highest activity was related to the largest amount of surface acidity on the catalyst, and the coke deposition was also related to the total amount of surface acidic sites.  相似文献   

6.
李伟  张成  李鑫  谭鹏  周安鹂  方庆艳  陈刚 《催化学报》2018,39(10):1653-1663
作为引起酸雨、光化学烟雾、雾霾等大气污染问题的主要根源,氮氧化物(NOx)的防治已成为亟待解决的问题.选择性催化还原技术作为最成熟有效的脱硝技术,目前已经被广泛应用于各燃煤电厂.低温脱硝催化剂具有优秀的低温活性,使得脱硝装置可以安放在脱硫装置和除尘装置下游,受到了学者广泛的研究.目前低温脱硝催化剂的研究主要是对催化剂进行改性以提高催化剂的性能,已有许多研究报道了Sn、Ni、Co、Zr、Cr、Ni等对催化剂的改性影响.Ho作为一种改性元素被应用于光催化领域,能提高TiO2的光催化能力.但Ho应用于脱硝领域的研究鲜有报道,其氧化物具有酸性位点有助于脱硝反应,因此研究Ho对低温SCR催化剂的改性作用具有重要意义.本文采用浸渍法制备Ho掺杂的Mn-Ce/TiO2催化剂,研究了Ho的掺杂对于Mn-Ce/TiO2催化剂低温脱硝性能的影响,同时还研究了烟气中的SO2和H2O对催化剂活性的影响,并利用XPS、XRD、H2-TPR、NH3-TPD等表征方法从物理性质和化学性质两方面对Ho改性的影响机理进行了研究.研究发现,Ho的掺杂能提高Mn-Ce/TiO2催化剂的脱硝能力,有助于催化剂N2选择性的提高.分析表明,Ho的掺杂有助于催化剂比表面积的提升,且能提高催化剂的酸性,有利于催化剂对NH3的吸附,从而提高催化剂的性能.XPS表征结果表明Ho掺杂后的催化剂具有更高的化学吸附氧浓度和较高的Mn4+/Mn3+比例, 使得脱硝反应更容易进行.改性后催化剂的抗水抗硫实验结果表明,Ho的掺杂能够提高催化剂的抗水抗硫性能.XRD结果表明,抗水抗硫实验后催化剂表面形成了硫酸铵盐,硫酸铵盐的形成会堵塞催化剂表面的活性位,限制脱硝反应的进行,从而影响催化剂的脱硝活性.同时,400°C下进行再生实验后的催化剂活性有所恢复,但是未能达到抗水抗硫实验前的活性,表明在抗水抗硫实验中催化剂表面形成了除硫酸铵盐以外的其他硫酸盐类.结合XPS和XRD表征结果,推断生成的盐类物质为硫酸锰和硫酸铈,从而导致再生后的催化剂的脱硝活性无法恢复到最初的活性水平.由此可以看出,硫酸盐的形成是催化剂在含硫气氛中失活的主要原因.  相似文献   

7.
Compared to traditional alumina Claus catalysts, titania based sulfur recovery catalysts demonstrate improved initial activity for the recovery of elemental sulfur from both hydrogen sulfide and sulfur dioxide and are less prone to aging by sulfation. The influence of the preparation mode on the properties of titania catalysts is studied in detail: With increasing calcination temperature, surface area drastically decreases, whereas mechanical strength goes through a minimum, with only minor modifications of total pore volume and catalytic activity. Addition of calcium during catalyst preparation hinders the loss of mechanical properties while allowing a higher calcination temperature. Hydrothermal aging of such catalysts is therefore limited during operation in the plant.  相似文献   

8.
Mixed Al2O3-MgO catalysts were prepared and characterized. The catalyst acidity can be controlled by varying the calcination temperature and by impregnation with fluorine or sodium compounds. In the reaction of 2-propanol, the dehydration rate constant increases with the calcination temperature and the amount of impregnated fluorine, whereas reverse results occur with an increase of impregnated sodium compound.  相似文献   

9.
The effect of calcination temperature on the state of the active component of iron-containing catalysts prepared by the impregnation of silica gel with a solution of FeSO4 and on their catalytic properties in selective H2S oxidation to sulfur was studied. With the use of thermal analysis, XPS, and Mössbauer spectroscopy, it was found that an X-ray amorphous iron-containing compound of complex composition was formed on the catalyst surface after thermal treatment in the temperature range of 400–500°C. This compound contained Fe3+ cations in three nonequivalent positions characteristic of various oxy and hydroxy sulfates and oxide and sulfate groups as anions. Calcination at 600°C led to the almost complete removal of sulfate groups; as a result, the formation of an oxide structure came into play, and it was completed by the production of finely dispersed iron oxide in the ?-Fe2O3 modification (the average particle size of 3.2 nm) after treatment at 900°C. As the calcination temperature was increased from 500 to 700°C, an increase in the catalyst activity in hydrogen sulfide selective oxidation was observed because of a change in the state of the active component. A comparative study of the samples by temperature-programmed sulfidation made it possible to establish that an increase in the calcination temperature leads to an increase in the stability of the iron-containing catalysts to the action of a reaction atmosphere.  相似文献   

10.
A novel ZnO/Ca(OH)2/KF solid base catalyst was prepared by the grinding method and applied to biodiesel synthesis by the transesterification of soybean oil. The effect of various parameters such as KF molar amount, calcination temperature, the amount of catalyst, molar ratio of methanol to oil, reaction temperature, and time on the activity of the catalyst were investigated. The catalysts were characterized by several techniques of thermogravimetry/derivative thermogravimetry, X–ray diffraction, Hammett indicator method, and scanning electron microscopy. The analysis results indicated that the KF interacted with Ca(OH)2 and formed KCaF3 phase before calcination of the catalyst. The formed KCaF3 crystal phase was the main catalytic active component for the catalyst activity. In addition, the basicity of ZnO/Ca(OH)2/KF was greatly influenced by the different calcination temperates, and the catalyst activity was correlated closely with the basicity. A desired biodiesel yield of 97.6 % was obtained at catalyst amount of 3 %, methanol/oil of 12:1, and reaction time of 1.5 h at 65 °C.  相似文献   

11.
The modified Ce-SAPO-34 catalysts were prepared with three methods, i.e., the liquid ion exchange with air calcination, impregnation with air calcination and impregnation with steam calcination methods. The catalytic performances of the catalysts for methanol to olefins were investigated. The properties of the catalysts were characterized using XRD, BET, XRF, FT-IR and NH3-TPD. The results indicated that compared to the SAPO-34 catalyst the catalyst prepared with the impregnation and air calcination prolonged the lifetime by 40 min and improved the selectivity to ethylene by 5% (mol) and the catalyst prepared with the impregnation and steam calcination showed the best modification effect, prolonging the lifetime by 70 min and improving the ethylene selectivity by 10% (mol). The catalyst prepared with the liquid ion exchange showed similar behaviour as the SAPO-34 catalyst. It was verified that the porous structure and surface acidity of these catalysts determined their catalytic behaviors.  相似文献   

12.

Abstract  

Impregnated Cu–Zn over Al2O3 exhibits high activity with the use of a lower amount of active metal relative to conventional co-precipitation catalysts. The activity of the catalyst could be enhanced by addition of urea to the metal salt solution during impregnation. The H2 yield from Cu–Zn catalysts with urea is 42%, while the H2 yield from catalyst without urea is only 28% in a continuous system at 250 °C and 1.2 atm. The H2 yield of the catalyst with urea in this study could compete with that of commercial catalysts. The role of urea in the Cu–Zn catalysts was investigated. X-ray diffraction (XRD) analysis of the catalysts shows that the crystal size of CuO could be reduced by the addition of urea. The XRD diffractogram of the catalyst prior to calcination also shows the formation of NH4NO3, which could aid in dissociation of metal clusters. Scanning electron microscopy (SEM) images of catalysts show the size of Cu–Zn compound clusters and also their dispersion over the Al2O3 surface on the impregnated catalysts. The addition of urea could also yield smaller Cu–Zn compound clusters and better dispersion compared with the impregnated catalyst without urea. Such impregnated Cu–Zn catalysts with urea could be alternative novel catalysts for methanol steam reforming.  相似文献   

13.
利用沉积沉淀法制备了Pt/TiO2催化剂, 将其在不同温度下焙烧, 以得到不同颗粒尺寸的Pt. 并将这些样品用于CO催化氧化反应以及反应动力学研究. 结果表明: 焙烧温度对催化剂有明显影响, Pt 颗粒尺寸随着焙烧温度的升高而增加; 与此同时, CO催化活性随焙烧温度的升高呈先增加后降低的趋势, 其中, 400℃焙烧的样品表现出最高的催化活性. 反应动力学结果表明, 催化剂上CO氧化反应表观速率方程为r=5.4×10-7pCO0.17pO20.36,说明在该催化剂上CO氧化遵循Langmuir-Hinshelwood机理. 同时, 对催化剂进行了CO化学吸附红外光谱和O2化学吸附表征. 结果表明, 随着焙烧温度的升高, 催化剂上CO和O2吸附量均呈现先升高后降低的趋势, 这与反应结果和反应动力学方程一致, 说明反应受到催化剂表面上CO和O2吸附浓度的影响. 而在400℃焙烧的催化剂上, CO和O2吸附量均最高, 因此其反应活性也最好. 这可能是焙烧过程影响了Pt 和TiO2之间的相互作用引起的.  相似文献   

14.
采用共沉淀法制备了MnOx-CeO2-WO3-ZrO2催化剂,考察了催化剂焙烧温度对O2和H2O存在下NH3选择性催化还原(NH3-SCR) NO的影响,并利用低温N2吸附、X射线衍射(XRD)、透射电镜(TEM)、X射线光电子能谱(XPS)、NH3程序升温脱附(NH3-TPD)和CO脉冲反应对催化剂进行了表征. 结果表明在NH3-SCR反应中,催化剂的低温活性随焙烧温度的提高而降低,这是由于催化剂表面化学吸附氧和酸性位减少引起的;催化剂的高温活性随焙烧温度的提高先增加后减小,这与催化剂表面最易释放氧数量的变化趋势相反. 700 ℃焙烧的催化剂具有良好的低温活性和最宽的反应温度窗口,在空速为90000 h-1的条件下,该催化剂的起燃温度(50% NO转化率)为189 ℃,且反应温度在218-431 ℃范围内,NO转化率可达到80%-100%.  相似文献   

15.
Synthesis of cellulose sulfates (CSs) and carboxyl cellulose sulfates (COCSs) with regioselectively or regiospecifically distributed functional groups within anhydroglucose units was reported. CS with regioselectively distributed sulfate groups at 2,3-O- or 2,6-O-position were homogeneously synthesized and cellulose trifluoroacetate (CTFA) was used as intermediates. The trifluoroacetyl groups were detected primarily at 6-O-position and their distributions could be altered by changing the amount of trifluoroacetyl anhydride (TFAA). Various sulfating agents were used for further homogeneous sulfation of CTFA. The total degree of sulfation (DSS) and the distribution of sulfate groups within the repeating units were affected by the amount of TFAA, the type and amount of sulfating agents. Subsequent homogenous 4-acetamide-TEMPO or TEMPO-mediated oxidation of CS led to COCS with carboxyl groups regiospecifically distributed at C6 position, which may be interesting structural mimics for natural occurring heparin.  相似文献   

16.
The poisoning effect of calcium on a commercial De-NO x SCR catalyst (V2O5–WO3/TiO2) and the regeneration process of deactivated catalysts via water or H2SO4 washing were investigated under simulated condition in laboratory. The physicochemical properties of the catalysts were characterized by SEM–EDX, XRD, BET, TPD and FT-IR measurements, and the deactivation mechanism was discussed. The poisoning of calcium was attributed to the coverage of active sites and the reduction of acid sites on the surface of catalyst. The change of V=O bonds on catalyst surface was an important reason, which plays a significant role in the catalytic cycle of SCR. Due to the suction deliquescence of CaO to Ca(OH)2, the catalytic activity of deactivated catalyst can be finitely recovered by water washing. Besides, as the result of the re-exposure of active sites by washing CaO off and the promotional effect of surface sulfation, the process of regeneration via sulfuric acid washing has a favorable effect in the experiment.  相似文献   

17.
张贺  邹永刚  彭悦 《催化学报》2017,38(1):160-167
由发电厂等固定源和柴油机等移动源排放的一氧化氮(NO)造成的环境污染问题日益严重.随着严苛的排放法规出台,NO排放控制技术受到越来越多关注.NH3选择性催化还原(SCR)技术是目前去除NO应用最为广泛的方法之一.商业催化剂V2O5-WO3/TiO2在300–400℃温度窗口内显示出优越的NO去除效率,但仍存在一些问题,如钒氧化物的毒性以及在高温时形成N2O和SO3.因此,开发出低钒或无钒的新型催化剂是解决上述问题的关键.CeO2和含铈材料是重要的催化剂载体,具有良好的还原能力和氧存储功能,因而广泛应用于催化领域.CeO2添加到商用催化剂中不仅可以降低钒用量,而且可以提高催化剂抗碱金属中毒能力.CeO2-WO3催化剂在200℃以上时比商用催化剂具有更宽的温度窗口,并展现出较高的抗SO2和碱金属中毒能力.CeO2-ZrO2催化剂通过添加过渡金属元素可以提升其SCR活性,在较宽的温度窗口内具有较高的催化活性.废气中SO2可导致催化剂失活,在实际应用中催化剂硫中毒是较为常见的催化剂失效原因.通常情况下,锰基和铁基催化剂最容易硫中毒.然而CeO2催化剂在硫酸化处理后却展现出良好的SCR活性.催化剂硫酸化主要包括气相、液相和前驱体硫化三种方法.三种方法各有异同,但在催化剂表面形成的硫物种都是SO42–.硫酸化可以增强Ce基催化剂的SCR活性,但是对于硫化引起的催化剂表面酸性、氧化还原性以及NO吸附脱附性质的详细研究报道较少.本文通过液相法对CeO2-ZrO2(CeZr)催化剂进行了硫酸化.XRD结果表明,硫酸化并未对催化剂结晶结构产生影响.TPD和TPR结果表明,硫酸化后催化剂(S-CeZr)表面酸性增强,但抑制了其氧化性.通过原位红外光谱技术系统研究了催化剂在SCR反应过程中表面物种的变化,结果发现,CeZr和S-CeZr的催化机理相同,不同的SCR活性主要是由表面酸性和氧化性引起的.CeO2基催化剂在不同温度窗口遵循不同反应机理.CeZr催化剂具有较强的氧化还原性,使其对NO和NH3具有很强的氧化能力,所以其在低于200℃时具有较好的SCR活性.而S-CeZr催化剂具有更多的Br?nsted酸性位,导致NO不易吸附在催化剂表面,所以其在低温时SCR活性较差,但在高温时(>200℃)具有优良的SCR活性.通过SCR活性和反应机理研究,发现在高温时(>200℃),表面酸性尤其是强酸Br?nsted酸性位在SCR反应中起到决定性作用;而在低温时(<200℃),酸性位对NH3分子较强的键合作用导致NH3难以被氧化,所以较强的酸性位对SCR活性具有抑制作用,而氧化还原性在低温时对SCR反应起到主要作用.同时,在高温时,较高的氧化性可使NH3被O2直接氧化,导致N2选择性降低.  相似文献   

18.
《中国化学会会志》2018,65(6):793-800
A new catalyst with uniformly distributed metal oxide is synthesized and characterized. The active centers Cu–ZnO of the designed catalyst are well distributed in the ordered mesoporous carbon FDU‐15 which has very high BET surface area and large pore volume. The effects of the amount of metal oxide loading, calcination temperature, and ramping rate on the resulting catalysts are investigated using N2‐physisorption, X‐ray diffraction, and scanning and electron microscopy. The results show that the Cu–ZnO particle size increases with the metal loading and calcination temperature, whereas it decreases with the ramping rate. When the metal loading is 20%, the calcination temperature is 700 °C, and the ramping rate is 20 °C/min, uniform metal oxide particles well distributed on the carbon support are obtained.  相似文献   

19.
The catalytic decomposition of KClO4 by Fe2O3, obtained by calcination of Fe(II) salts at different temperatures, was investigated by DTA, TG, X-ray and IR. A sample without catalyst was found to begin fusion and decomposition simultaneously, and to form an intermediate, KClO3. Addition of catalysts resulted in solid-phase decomposition before fusion of KClO4, and in a small amount of KClO3. The difference in catalytic effect observed for different catalysts was less in the molten-phase decomposition than in the solid phase. The initial decomposition temperature (T i) increased with the temperature of preparation of the catalyst and showed a definitive relationship with the crystallite size of the catalyst. The change ofT i is discussed on the basis of then-type semiconductive properties of the catalyst.  相似文献   

20.
杨宝轩  周娇  姚书恒 《分子催化》2022,36(4):301-312
通过对Ce-TiO2催化剂进行SO2+O2气氛下的不同时间的预硫化处理并用于NH3-SCR反应,研究了Ce-TiO2催化剂物化特性随预硫化时间的演变规律,以及预硫化对中低温活性及NH3-SCR反应路径的影响。结果表明Ce-TiO2催化剂表面氧化铈的硫酸化相当迅速,在预硫化处理0.5h后,几乎所有的表面氧化铈都被硫酸盐化形成硫酸铈,随着硫酸化时间的增加到1h和1.5h,Ce-TiO2催化剂上沉积的硫缓慢增加。活性测试表明预硫化后的催化剂对SCR活性的抑制作用随着反应温度的提高而减弱,结合NO-DRIFT、NH3-DRIFT等多种原位表征,结果表明预硫化后低温NH3-SCR活性大幅降低是由于生成硫酸铈后催化剂氧化还原能力大幅削弱,E-R反应路径严重受阻。随着反应温度的升高,SCR活性逐渐不受硫酸铈沉积的影响,一方面,氧化还原性能的提高导致E-R反应路径逐渐恢复;另一方面,硫酸铈的生成促进了NO的活化,增强了L-H反应路径,两者共同导致了预硫化后较高的中温NH3-SCR活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号