首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The covariant canonical method of quantization based on the De Donder–Weyl covariant canonical formalism is used to formulate a world-sheet covariant quantization of bosonic strings. To provide the consistency with the standard non-covariant canonical quantization, it is necessary to adopt a Bohmian deterministic hidden-variable equation of motion. In this way, string theory suggests a solution to the problem of measurement in quantum mechanics. PACS 11.25.-w; 04.60.Ds; 03.65.Ta  相似文献   

2.
The method of stochastic quantization of Parisi–Wu is extended to include spinor fields obeying the generalized statistics of order two consistent with the weak locality requirement. Appropriate Langevin and Fokker–Planck equations are constructed using paragrassmann variables, which give rise to two fields with different masses in the equilibrium limit, in agreement with the results of the canonical quantization procedure. The connection between the stochastic quantization method and conventional Euclidean field theory is established through Klein transformations. Received: 14 November 2001 / Published online: 8 February 2002  相似文献   

3.
We propose a manifestly covariant canonical method of field quantization based on the classical De Donder-Weyl covariant canonical formulation of field theory. Owing to covariance, the space and time arguments of fields are treated on an equal footing. To achieve both covariance and consistency with standard non-covariant canonical quantization of fields in Minkowski spacetime, it is necessary to adopt a covariant Bohmian formulation of quantum field theory. A preferred foliation of spacetime emerges dynamically owing to a purely quantum effect. The application to a simple time-reparametrization invariant system and quantum gravity is discussed and compared with the conventional non-covariant Wheeler-DeWitt approach.Received: 11 October 2004, Published online: 6 July 2005PACS: 04.20.Fy, 04.60.Ds, 04.60.Gw, 04.60.-m  相似文献   

4.
By generalizing a model previously proposed, a classical nonrelativistic U(1)×U(1) gauge field model for the electromagnetic interaction of composite particles in (2+1) dimensions is constructed. The model contains a Chern–Simons U(1) field and the electromagnetic U(1) field, and it describes both a composite boson system or a composite fermion one. The second case is considered explicitly. The model includes a topological mass term for the electromagnetic field and interaction terms between the gauge fields. By following the Dirac Hamiltonian formalism for constrained systems, the canonical quantization for the model is realized. By developing the path integral quantization method through the Faddeev–Senjanovic algorithm, the Feynman rules of the model are established and its diagrammatic structure is discussed. The Becchi–Rouet–Stora–Tyutin formalism is applied to the model. The obtained results are compared with the ones corresponding to the previous model.  相似文献   

5.
The problem of canonical quantization of singular systems in a finite volume is studied by analysing a non-relativistic field theory. Firstly, we take the boundary conditions (BCs) as primary Dirac constraints. The quantization is performed canonically using Dirac’s procedure. Then, we quantize this model canonically in the classical solution space. We show that these two different quantization schemes are equivalent although they start from different settings.  相似文献   

6.
The free massless Rarita-Schwinger equation and a recently constructed interacting field theory known as supergravity are invariant under fermionic gauge transformations. Gauge field quantization techniques are applied in both cases. For the free field the Faddeev-Popov ansatz for the generating functional is justified by showing that it is equivalent to canonical quantization in a particular gauge. Propagators are obtained in several gauges and are shown to be ghost-free and causal. For supergravity the Faddeev-Popov ansatz is presented and the gauge fixing and determinant terms are discussed in detail in a Lorentz covariant gauge. The Slavnov-Taylor identity is obtained. It is argued that supergravity theory is free from the difficulty of acausal wave propagation of the type found by Velo and Zwanziger and that pole residues in tree approximation S-matrix elements are positive as required by unitarity.  相似文献   

7.
A quantization of field theory based on the De Donder-Weyl (DW) covariant Hamiltonian formulation is discussed. A hypercomplex extension of quantum mechanics, in which the space-time Clifford algebra replaces that of the complex numbers, appears as a result of quantization of Poisson brackets on differential forms which were put forward for the DW theory earlier. The proposed covariant hypercomplex Schrödinger equation is shown to lead in the classical limit to the DW Hamilton-Jacobi equation and to obey the Ehrenfest principle in the sense that the DW canonical field equations are satisfied for expectation values of properly chosen operators.  相似文献   

8.
9.
10.
Using a strongly covariant formalism given by Carter for the deformations dynamics of p-branes in a curved background and a covariant and gauge invariant geometric structure constructed on the corresponding Witten's phase space, we identify the canonical variables for Dirac–Nambu–Goto (DNG) and Gauss–Bonnet (GB) system in string theory. Future extensions of the present results are outlined.  相似文献   

11.
External gravitational fields induce phase factors in the wave functions of particles. The phases are exact to first order in the background gravitational field, are manifestly covariant and gauge invariant and provide a useful tool for the study of spin–gravity coupling and of the optics of particles in gravitational or inertial fields. We discuss the role that spin–gravity coupling plays in particular problems.  相似文献   

12.
Rules of quantization and equations of motion for a finite-dimensional formulation of quantum field theory are proposed which fulfill the following properties: (a) Both the rules of quantization and the equations of motion are covariant; (b) the equations of evolution are second order in derivatives and first order in derivatives of the spacetime coordinates; and (c) these rules of quantization and equations of motion lead to the usual (canonical) rules of quantization and the (Schrödinger) equation of motion of quantum mechanics in the particular case of mechanical systems. We also comment briefly on further steps to fully develop a satisfactory quantum field theory and the difficuties which may be encountered when doing so.  相似文献   

13.
We study the canonical quantization of SU(N) gauge theory in linear, noncovariant gauges. The canonical formalism is first discussed for the classical theory, with special attention to the features involving nonlinearity and the gauge degrees of freedom. The transition to the quantum theory is then performed for an arbitrary linear gauge, using the covariant quantization rules of nonlinear quantum mechanics. When the quantum Hamiltonian is written in the Weyl-ordered form appropriate for the application of the usual Dyson-Wick perturbative techniques, additional ordering terms appear with respects to the classical Hamiltonian. We discuss the relation of our results to those of previous authors, and the relevance of the ordering terms in field theory.  相似文献   

14.
We develop the Moyal formalism in the context of covariant wave equations, such as Dirac's or Proca's wave equations, using the Moyal formalism for the canonical or Wigner representation and the relation between covariant and canonical representations.  相似文献   

15.
《Nuclear Physics B》1998,524(3):779-790
We show that the generators of canonical transformations in the triplectic manifold must satisfy constraints that have no parallel in the usual field antifield quantization. A general form for these transformations is presented. Then we consider gauge fixing by means of canonical transformations in this Sp(2) covariant scheme, finding a relation between generators and gauge fixing functions. The existence of a wide class of solutions to this relation nicely reflects the large freedom of the gauge fixing process in the triplectic quantization. Some solutions for the generators are discussed. Our results are then illustrated by the example of Yang-Mills theory.  相似文献   

16.
We show that the non-commutative Yang–Mills field forms an irreducible representation of the (undeformed) Lie algebra of rigid translations, rotations and dilatations. The non-commutative Yang–Mills action is invariant under combined conformal transformations of the Yang–Mills field and of the non-commutativity parameter . The Seiberg–Witten differential equation results from a covariant splitting of the combined conformal transformations and can be computed as the missing piece to complete a covariant conformal transformation to an invariance of the action. Received: 6 November 2001 / Published online: 5 April 2002  相似文献   

17.
We find the canonical and Belinfante energy-momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken and the divergence of the dilatation current is proportional to the topological mass of the gauge field. It was demonstrated that the gauge field possesses the ‘scale dimensionality’ d=1/2. Maxwell–Chern–Simons topologically massive gauge field theory in 2+1 dimensions is formulated in the first-order formalism. It is shown that 6×6-matrices of the relativistic wave equation obey the Duffin–Kemmer–Petiau algebra. The Hermitianizing matrix of the relativistic wave equation is given. The projection operators extracting solutions of field equations for states with definite energy-momentum and spin are obtained. The 5×5-matrix Schr?dinger form of the equation is derived after the exclusion of non-dynamical components, and the quantum-mechanical Hamiltonian is obtained. Projection operators extracting physical states in the Schr?dinger picture are found.  相似文献   

18.
We employ the familiar canonical quantization procedure in a given cosmological setting to argue that it is equivalent to and results in the same physical picture if one considers the deformation of the phase-space instead. To show this we use a probabilistic evolutionary process to make the solutions of these different approaches comparable. Specific model theories are used to show that the independent solutions of the resulting Wheeler–DeWitt equation are equivalent to solutions of the deformation method with different signs for the deformation parameter. We also argued that since the Wheeler–DeWitt equation is a direct consequence of diffeomorphism invariance, this equivalence is only true provided that the deformation of phase-space does not break such an invariance.  相似文献   

19.

We have considered the generalized version of chiral schwinger model with the Lorentz covariant masslike term for gauge field with the choice a ? r2 =?0. We carry out the quantization by the canonical Dirac method of both the gauge-invariant and non-invariant version of this model to determine the phase space structure. Therefore we have shown that the gauge invariant theory has the same physical spectrum as that of the original gauge noninvariant formulation.

  相似文献   

20.
We generalize the Faddeev–Jackiw canonical path integral quantization for the scenario of a Jacobian with J=1 to that for the general scenario of non-unit Jacobian, give the representation of the quantum transition amplitude with symplectic variables and obtain the generating functionals of the Green function and connected Green function. We deduce the unified expression of the symplectic field variable functions in terms of the Green function or the connected Green function with external sources. Furthermore, we generally get generating functionals of the general proper vertices of any n-points cases under the conditions of considering and not considering Grassmann variables, respectively; they are regular and are the simplest forms relative to the usual field theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号