首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, the possibility to use Ti/RuO2 electrode as capacitor for storage of photoelectrons generated under UV irradiation in Ti/TiO2 photoelectrode has been investigated. A light-sensitive TiO2 layer has been formed by means of anodizing Ti electrode in the solution of 0.5 M H2SO4. A layer of RuO2, exhibiting the properties of electrochemical capacitor, has been formed by means of thermal decomposition of RuOHCl3 also on Ti substrate. The photocharging capability of RuO2 has been studied by means of short-circuiting Ti/RuO2 electrode with Ti/TiO2 photoelectrode in deaerated solution of 0.1 M KOH. It has been shown that the intensity of photocurrent flowing from Ti/TiO2 to Ti/RuO2 electrode depends mainly on the potential of the latter. Maximum value of photocurrent density was ∼180 μA cm−2, which corresponded to maximum value of photon-to-electron conversion efficiency (IPCE) of about 60%. The amount of photogenerated charge Q ph, which can be stored, depends on the capacitance of RuO2 coating. Under the conditions of the experiment, Q ph ranged from ∼35 to ∼50 mC, which corresponded to a specific charge of RuO2 coating ranging between ∼20 and ∼30 mAh g−1.  相似文献   

2.
TiO2 array film fabricated by potentiostatic anodization of titanium is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge–discharge measurements. The XRD results indicated that the TiO2 array is amorphous, and after calcination at 500 °C, it has the anatase form. The pore size and wall thickness of TiO2 nanotube arrays synthesized at different anodization voltages are highly dependent on the applied voltage. The electrochemical performance of the prepared TiO2 nanotube array as an electrode material for lithium batteries was evaluated by galvanostatic charge–discharge measurement. The sample prepared at 20 V shows good cyclability but low discharge capacity of 180 mA h cm−3, while the sample prepared at 80 V has the highest discharge capacity of 340 mA h cm−3.  相似文献   

3.
Ti/IrO2(x) + MnO2(1-x) anodes have been fabricated by thermal decomposition of a mixed H2IrCl6 and Mn(NO3)2 hydrosolvent. Cyclic voltammetry (CV) and polarization curve have been utilized to investigate the electrochemical behavior and electrocatalytic activity of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution (pH = 2). Ti/IrO2+MnO2 anode with 70 mol% IrO2 content has the maximum value of q*, indicating that Ti/IrO2(0.7) + MnO2(0.3) anode has the most excellent electrocatalytic activity for the synchronal evolution of Cl2 and O2 in dilute NaCl solution. Tafel lines displayed two distinct linear regions with one of the slope close to 62 mV dec−1 in the low potential region and the other close to 295 mV dec−1 in the high potential region. Electrochemical impedance spectroscopic is employed to investigate the impedance behavior of Ti/IrO2(x) + MnO2(1-x) anodes in 0.5 M NaCl solution. It is observed that as the R ct, R s and R f values for Ti/IrO2(0.7) + MnO2(0.3) anode become smaller, electrocatalytic activity of Ti/IrO2(0.7) + MnO2(0.3) anode becomes better than that of other Ti/IrO2 + MnO2 anodes with different compositions. Ti/IrO2(0.7) + MnO2(0.3) anode fabricated at 400 °C has been observed to possess the highest service life of 225 h, whereas the accelerated life test is carried out under the anodic current of 2 A cm−2 at the temperature of 50 °C in 0.5 M NaCl solution (pH = 2).  相似文献   

4.
Human flavin-containing monooxygenases are the second most important class of drug-metabolizing enzymes after cytochromes P450. Here we report a simple but functional and stable enzyme-electrode system based on a glassy carbon (GC) electrode with human flavin-containing monooxygenase isoform 3 (hFMO3) entrapped in a gel cross-linked with bovine serum albumin (BSA) by glutaraldehyde. The enzymatic electrochemical responsiveness is characterised by using well-known substrates: trimethylamine (TMA), ammonia (NH3), triethylamine (TEA), and benzydamine (BZD). The apparent Michaelis–Menten constant (KM) and apparent maximum current (Imax) are calculated by fitting the current signal to the Michaelis–Menten equation for each substrate. The enzyme-electrode has good characteristics: the calculated sensitivity was 40.9 ± 0.5 mA mol−1 L cm−2 for TMA, 43.3 ± 0.1 mA mol−1 L cm−2 for NH3, 45.2 ± 2.2 mA mol−1 L cm−2 for TEA, and 39.3 ± 0.6 mA mol−1 L cm−2 for BZD. The stability was constant for 3 days and the inter-electrode reproducibility was 12.5%. This is a novel electrochemical tool that can be used to investigate new potential drugs against the catalytic activity of hFMO3.  相似文献   

5.
A novel electrode was prepared by implanting NH2 + into an ITO film (NH2/ITO). Gold nanoparticles were deposited on the surface of NH2/ITO electrode. The NH2/ITO and Au/NH2/ITO electrodes were used to determine hemoglobin (Hb) immobilized on the electrodes surfaces. The relationship of the reductive peak current value of Hb among different electrodes was: Hb/ITO:Hb/Au/ITO:Hb/NH2/ITO:Hb/Au/NH2/ITO=1:1.5:2:4. The linkage between the –NH2 implanted into ITO film and the –COOH of Hb was recognized to be the reason for the increase of active Hb coverage on NH2/ITO electrode compared with the ITO electrode. Increase of active Hb coverage on Au/NH2/ITO compared with Au/ITO was attributed to the different amount of gold nanoparticles deposited. The determination of Hb at an Au/NH2/ITO electrode was optimized. Calibration curve was obtained over the range of 1.0 × 10−8 – 1.0 × 10−6 mol · L−1 with a detection limit of 1.0 × 10−8 mol · L−1. Results showed that the novel NH2/ITO and Au/NH2/ITO electrodes exhibited good stability, reproducibility besides better electrochemical performance. Correspondence: Jing Bo Hu, Department of Chemistry, Beijing Normal University, Beijing 100875, China  相似文献   

6.
In this paper, an electrochemical sensor for sensitive and convenient determination of salicylic acid (SA) was constructed using well-aligned multiwalled carbon nanotubes as electrode material. Compared to the glassy carbon electrode, the electro-oxidation of SA significantly enhanced at the multiwalled carbon nanotube (MWCNT) electrode. The MWCNT electrode shows a sensitivity of 59.25 μA mM−1, a low detection limit of 0.8 × 10−6 M and a good response linear range with SA concentration from 2.0 × 10−6 to 3.0 × 10−3 M. In addition, acetylsalicylic acid was determined indirectly after hydrolysis to SA and acetic acid, which simplified the detection process. The mechanism of electrochemical oxidation of SA at the MWCNT electrode is also discussed.  相似文献   

7.
The electrochemical and spectroelectrochemical properties of the sensitizer dye Z907 (cis-RuLL'(SCN)2 with L=4,4-dicarboxylic acid-2,2-bipyridine and L'=4,4-dinonyl-2,2-bipyridine) adsorbed on fluorine-doped tin oxide (FTO) and TiO2 surfaces have been investigated. Langmuirian binding constants for FTO and TiO2 are estimated to be 3 × 106 M−1 and 4 × 104 M−1, respectively. The Ru(III/II) redox process is monitored by voltammetry and by spectroelectrochemistry. For Z907 adsorbed onto FTO, a slow EC-type electrochemical reaction is observed with a chemical rate constant of ca. k = 10−2 s−1 leading to Z907 dye degradation of a fraction of the FTO-adsorbed dye. The Z907 adsorption conditions affect the degradation process. No significant degradation was observed for TiO2-adsorbed dye. Degradation of the Z907 dye affects the electron hopping conduction at the FTO–TiO2 interface.  相似文献   

8.
Solid composite polymer electrolytes consisting of polyethylene oxide (PEO), LiClO4, and porous inorganic–organic hybrid poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) (PZS) nanotubes were prepared using the solvent casting method. Differential scanning calorimetry and scanning electron microscopy were used to determine the characteristics of the composite polymer electrolytes. The ionic conductivity, lithium ion transference number, and electrochemical stability window can be enhanced after the addition of PZS nanotubes. The electrochemical impedance showed that the conductivity was improved significantly. Maximum ionic conductivity values of 1.5 × 10−5 S cm−1 at ambient temperature and 7.8 × 10−4 S cm−1 at 80 °C were obtained with 10 wt.% content of PZS nanotubes, and the lithium ion transference number was 0.35. The good electrochemical properties of the solid-state composite polymer electrolytes suggested that the porous inorganic–organic hybrid polyphosphazene nanotubes had a promising use as fillers in SPEs and the PEO10–LiClO4–PZS nanotube solid composite polymer electrolyte might be used as a candidate material for lithium polymer batteries.  相似文献   

9.
The preparation and electrochemical characterization of a carbon nanotube paste electrode modified with 2,2′-[1,2-ethanediylbis (nitriloethylidyne)]-bis-hydroquinone, referred to as EBNBH, was investigated. The EBNBH carbon nanotube paste electrode (EBNBHCNPE) displayed one pair of reversible peaks at E pa = 0.18 V and E pc = 0.115 V vs Ag/AgCl. Half wave potential (E 1/2) and ΔE p were 0.148 and 0.065 V vs Ag/AgCl, respectively. The electrocatalytic oxidation of ascorbic acid (AA) has been studied on EBNBHCNPE, using cyclic voltammetry, differential pulse voltammetry and chronoamperometry techniques. It has been shown that the oxidation of AA occurs at a potential where oxidation is not observed at the unmodified carbon paste electrode. The heterogeneous rate constant for oxidation of AA at the EBNBHCNPE was also determined and found to be about 1.07 × 10−3 cm s−1. The diffusion coefficient of AA was also estimated as 5.66 × 10−6 cm2 s−1 for the experimental conditions, using chronoamperometry. Also, this modified electrode presented the property of electrocatalysing the oxidation of AA and uric acid (UA) at 0.18 and 0.35 V vs Ag/AgCl, respectively. The separations of anodic peak potentials of AA and UA reached 0.17 V. Using differential pulse voltammetry, the calibration curves for AA and UA were obtained over the range of 0.1–800 μM and 20–700 μM, respectively. With good selectivity and sensitivity, the present method provides a simple method for selective detection of AA and UA in biological samples.  相似文献   

10.
Total mercury (HgT) determination requires the addition of concentrated hydrochloric acid solution (≥10 mol L−1 HCl) in relatively high amounts to preserve the samples and to prepare reagent solutions. A method for the preparation of concentrated HCl with HgT concentration of lower than 5 ng L−1 is described in this article. It is based on the well-known chemical reaction: 2 NH4Cl + H2SO4 → (NH4)2SO4 + 2 HCl. This method is validated thanks to the US Environmental Protection Agency method 1631 and standard reference materials BCR-579 (mercury in coastal seawater).  相似文献   

11.
A Ti/SnO2 + RuO2 + MnO2 electrode was prepared by thermal decomposition of their salts. Results from SEM and XPS analyses, respectively, indicate that the coating layer exhibits a compact structure and the oxidation state of Mn in the coating layer is +IV. The experimental activation energy for the oxygen evolution reaction, which increased linearly with increasing overpotential, is about 8 kJ⋅mol−1 at the equilibrium potential (η=0). The electrocatalytic characteristics of the anode are discussed in terms of ligand substitution reaction mechanisms (Sn1 and Sn2). It was found that the transition state for oxygen evolution at the anode in acidic solution follows a dissociative mechanism (Sn1 reaction). The Ti/SnO2 + RuO2 + MnO2 anode in conjunction with UV illumination was used to degrade phenol solutions, where the concentration of phenol remaining was determined by high-performance liquid chromatography (HPLC). The results indicate that the degradation efficiency of phenol on the anode can reach 96.3% after photoelectrocatalytic oxidation for 3 h.  相似文献   

12.
The electrocatalytic oxidation of quinine sulfate (QS) was investigated at a glassy carbon electrode, modified by a gel containing multiwall carbon nanotubes (MWCNTs) and room-temperature ionic liquid of 1-Butyl-3-methylimidazolium hexafluorophate (BMIMPF6) in 0.10 M of phosphate buffer solution (PBS, pH 6.8). It was found that an irreversible anodic oxidation peak of QS with E pa as 0.99 V appeared at MWCNTs-RTIL/glassy carbon electrode (GCE). The electrode reaction process was a diffusion-controlled one and the electrochemical oxidation involved two electrons transferring and two protons participation. Furthermore, the charge-transfer coefficient (α), diffusion coefficient (D), and electrode reaction rate constant (k f) of QS were found to be 0.87, 7.89 × 10−3 cm2⋅s−1 and 3.43 × 10−2 s−1, respectively. Under optimized conditions, linear calibration curves were obtained over the QS concentration range 3.0 × 10−6 to 1.0 × 10−4 M by square wave voltammetry, and the detection limit was found to be 0.44 μM based on the signal-to-noise ratio of 3. In addition, the novel MWCNTs-RTIL/GCE was characterized by the electrochemical impedance spectroscopy and the proposed method has been successfully applied in the electrochemical quantitative determination of quinine content in commercial injection samples and the determination results could meet the requirement.  相似文献   

13.
 A lead electrode was studied in 6 and 12 M H3PO4. Oxidation of a freshly polished electrode occurred in the −0.5 to −0.3 V vs. SCE range, and led to PbHPO4 growth on the electrode surface. The dissolution of this layer by electrochemical reduction occurred between −0.5 and −0.7 V. The influence of temperature (20 °C and 65 °C) was investigated and showed that the anodic and the cathodic peaks were increasing, and more markedly for the 12 M H3PO4. The ratio Q cathodic/Q anodic (Q=electrical charge flowing through the electrode) was equal or close to the unity at 20 °C and decreased as the temperature was increased. The influence of Cl, Br and I ions was also evaluated. The addition of Cl and Br predominantly led to Pb5(PO4)3Cl and Pb5(PO4)3Br, respectively, while I led to a mixture of PbI2 and PbHPO4. Received: 18 July 1999 / Accepted: 2 November 1999  相似文献   

14.
A novel voltammetric sensor, based on single-walled carbon nanotubes (SWNT) dispersed in Nafion and modified glassy carbon electrode (GCE), was fabricated and used to determine the trace amounts of dihydromyricetin (DMY). The electrochemical behavior of DMY at this sensor was investigated in 0.1 mol L−1 sulfuric acid solutions + 0.1 mol L−1 NaCl by cyclic voltammetry and squarewave voltammetry. Compared with bare GCE, the electrode presented an excellent response of DMY through an adsorption-controlled quasi-reversible process. Under the optimum conditions, the response peak currents were linear relationship with the DMY concentrations in the range of 1.0 × 10−7–1.0 × 10−5 mol L−1 with a detection limit of 9 × 10−8 mol L−1. Based on this voltammetric sensor, a simple and sensitive electroanalytical method for DMY was proposed and applied to quantitative determination of DMY in Ampelopsis grossedentata samples. In addition, the oxidation mechanism was proposed and discussed, which could be a reference for the pharmacological action of DMY in clinical study.  相似文献   

15.
Here we reported that UV light irradiation can significantly enhance sensitivity of Ti/TiO2 electrode for determination of trace heavy metal ions (such as Cu2 +, Pb2 + and Cd2 +) owing to the photodeposition of metal ions on the surface of electrodes. The sensitivity of heavy metal ions can be selectively enhanced over the Ti/TiO2 electrode, which is attributed to matching between potential of heavy metal ions and the position of the conduction band of TiO2.  相似文献   

16.
An experiment was done on electrochemical–calorimetry to identify the Peltier heats of the ferro-ferricyanide reversible electrode reaction over the concentration range of 0.075–0.3 mol dm−3 at 298.15 K. A new approach has been developed to obtain the standard potential of this electrode, which was identified as (+0.3580 ± 0.0030) volt at 298.15 K and compared with previously reported values. An equation derived from the approach is also applied to several standard couples, such as Fe(CN)6−3/Fe(CN)6−4, H+/H2, Cu2+/Cu, Cl/Hg2Cl2,Hg, Fe3+/Fe2+, and Cl/Cl2 to determine their respective reaction heats with satisfying results.  相似文献   

17.
Effect of fumed silica dispersion on poly(vinylidene fluoride-co-hexafluoropropylene)-based magnesium ion-conducting gel polymer electrolyte has been studied using various physical and electrochemical techniques. The composite gel electrolytes are free-standing and flexible films with enough mechanical strength. The optimized composition with 3 wt.% filler offers a maximum ionic conductivity of ∼1.1 × 10−2 S cm−1 at ∼25 °C with good thermal and electrochemical stabilities. The Mg2+ ion conduction in the gel nanocomposite film is confirmed from the cyclic voltammetry, impedance spectroscopy, and transport number measurements. The space-charge layers formed between filler particles and gel electrolyte are responsible for the enhancement in ionic conductivity. The applicability of the gel nanocomposite to a rechargeable battery is examined by fabricating a prototype cell consisting of Mg [or Mg-multiwalled carbon nanotube (MWCNT) composite] and MoO3 as negative and positive electrodes, respectively. The discharge capacity and the rechargeability of the cell have been improved when Mg metal is substituted by Mg-MWCNT composite. The discharge capacity of the optimized cell has found to be ∼175 mAh g−1 of MoO3 for an initial ten charge–discharge cycles.  相似文献   

18.
The values of the second dissociation constant, pK 2, of N-(2-hydroxyethyl) piperazine-N′-2-ethanesulfonic acid (HEPES) have been reported at twelve temperatures over the temperature range 5 to 55 °C, including 37 °C. This paper reports the results for the pa H of eight isotonic saline buffer solutions with an I=0.16 mol⋅kg−1 including compositions: (a) HEPES (0.01 mol⋅kg−1) + NaHEPES (0.01 mol⋅kg−1) + NaCl (0.15 mol⋅kg−1); (b) HEPES (0.02 mol⋅kg−1) + NaHEPES (0.02 mol⋅kg−1) + NaCl (0.14 mol⋅kg−1); (c) HEPES (0.03 mol⋅kg−1) + NaHEPES (0.03 mol⋅kg−1) + NaCl (0.13 mol⋅kg−1); (d) HEPES (0.04 mol⋅kg−1) + NaHEPES (0.04 mol⋅kg−1) + NaCl (0.12 mol⋅kg−1); (e) HEPES (0.05 mol⋅kg−1) + NaHEPES (0.05 mol⋅kg−1) + NaCl (0.11 mol⋅kg−1); (f) HEPES (0.06 mol⋅kg−1) + NaHEPES (0.06 mol⋅kg−1) + NaCl (0.10 mol⋅kg−1); (g) HEPES (0.07 mol⋅kg−1) + NaHEPES (0.07 mol⋅kg−1) + NaCl (0.09 mol⋅kg−1); and (h) HEPES (0.08 mol⋅kg−1) + NaHEPES (0.08 mol⋅kg−1) + NaCl (0.08 mol⋅kg−1). Conventional pa H values, for all eight buffer solutions from 5 to 55 °C, have been calculated. The operational pH values with liquid junction corrections, at 25 and 37 °C have been determined based on the NBS/NIST standard between the physiological phosphate standard and four buffer solutions. These are recommended as pH standards for physiological fluids in the range of pH = 7.3 to 7.5 at I=0.16 mol⋅kg−1.  相似文献   

19.
A new method is described for the determination of ammonium in aqueous solutions with electrodes modified by Prussian blue (PB). The specific voltammetric response of PB-modified electrodes to ammonium ions is used for their analytical determination. In the presence of ammonium ions, a concentration-dependent inhibition of the low-spin iron(II/III) system of PB occurs. Only thallium and rubidium ions cause similar inhibition. A useful electrochemical determination method is thus available for detecting ammonium ions in the presence of frequently interfering potassium and sodium ions. Paraffin-impregnated graphite electrodes modified with a mechanically transferred PB layer and bulk-modified PB-composite electrodes are studied. The method is applicable within a concentration range which extends from 4 × 10−5 mol/l to 10−2 mol/l NH4 +. The composite electrode is used in an electrochemical flow-through system in conjunction with the Kjeldahl method. Received: 21 April 1997 / Accepted: 28 May 1997  相似文献   

20.
The potential application of ordered mesoporous carbon (OMC)-modified glassy carbon electrode (OMC/GCE) in electrochemistry as a novel electrode material was investigated. X-ray diffraction, transmission electron micrographs, and cyclic voltammetry were used to characterize the structure and electrochemical behaviors of this material. Compared to GC electrode, the peak currents of potassium ferricyanide (K3[Fe(CN)6]) increase and the peak potential separation (ΔE p) decreases at the OMC/GC electrode. These phenomena suggest that OMC-modified GC electrode possesses larger electrode area and faster electron transfer rate, as compared with bare GC electrode. Furthermore, riboflavin was detected using OMC/GC electrode in aqueous solutions. The results showed that, under an optimum condition (pH 7.0), the OMC/GC electrode exhibited excellent response performance to riboflavin in the concentration range of 4.0 × 10−7 to 1.0 × 10−6 M with a high sensitivity of 769 μA mM−1. The detection limit was down to around 2 × 10−8 M. With good stability and reproducibility, the present OMC/GC electrode was applied in the determination of vitamin B2 content in vitamin tablets, and satisfactory results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号