首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type‐2 diabetes (T2D) is considered to be a potential threat on a global level. Recently, T2D has been listed as a misfolding disease, such as Alzheimer's and Parkinson's diseases. Human islet amyloid polypeptide (hIAPP) is a molecule cosecreted in pancreatic β cells and represents the main constituent of an aggregated amyloid found in individuals affected by T2D. The trace‐element serum level is significantly influenced during the development of diabetes. In particular, the dys‐homeostasis of Cu2+ ions may adversely affect the course of the disease. Conflicting results have been reported on the protective role played by complex species formed by Cu2+ ions with hIAPP or its peptide fragments in vitro. The histidine (His) residue at position 18 represents the main binding site for the metal ion, but contrasting results have been reported on other residues involved in metal‐ion coordination, in particular those toward the N or C terminus. Sequences that encompass regions 17–29 and 14–22 were used to discriminate between the two models of the hIAPP coordination mode. Due to poor solubility in water, poly(ethylene glycol) (PEG) derivatives were synthesized. A peptide fragment that encompasses the 17–29 region of rat amylin (rIAPP) in which the arginine residue at position 18 was substituted by a histidine residue was also obtained to assess that the PEG moiety does not alter the peptide secondary structure. The complex species formed by Cu2+ ions with Ac‐PEG‐hIAPP(17–29)‐NH2, Ac‐rIAPP(17–29)R18H‐NH2, and Ac‐PEG‐hIAPP(14–22)‐NH2 were studied by using potentiometric titrations coupled with spectroscopic methods (UV/Vis, circular dichroism, and EPR). The combined thermodynamic and spectroscopic approach allowed us to demonstrate that hIAPP is able to bind Cu2+ ions starting from the His18 imidazole nitrogen atom toward the N‐terminus domain. The stability constants of copper(II) complexes with Ac‐PEG‐hIAPP(14–22)‐NH2 were used to simulate the different experimental conditions under which aggregate formation and oxidative stress of hIAPP has been reported. Speciation unveils: 1) the protective role played by increased amounts of Cu2+ ions on the hIAPP fibrillary aggregation, 2) the effect of adventitious trace amounts of Cu2+ ions present in phosphate‐buffered saline (PBS), and 3) a reducing fluorogenic probe on H2O2 production attributed to the polypeptide alone.  相似文献   

2.
The interactions of the bile salts sodium cholate (NaC) and sodium deoxycholate (NaDC) in 0.1 M NaCl (pH 7.4) with membranes composed of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) and mixtures of DPPC and DPPG at molar ratios of 3:1 and 1:1 were studied by means of high-sensitivity isothermal titration calorimetry (ITC), dynamic light scattering (DLS), and differential scanning calorimetry (DSC). The partition coefficients and the transfer enthalpies for the incorporation of bile salt molecules into the phospholipid membranes were determined by ITC. The vesicle-to-micelle transition was investigated by ITC, DLS, and DSC. The phase boundaries for the saturation of the vesicles and their complete solubilization established by ITC were in general agreement with DLS data, but systematic differences could be seen due to the difference in detected physical quantities. Electrostatic repulsion effects between the negatively charged bile salt molecules and the negatively charged membrane surfaces are not limiting factors for the vesicle-to-micelle transition. The membrane packing constraints of the phospholipid molecules and the associated spontaneous curvature of the vesicles play the dominant role. DPPG vesicles are transformed by the bile salts into mixed micelles more easily or similarly compared to DPPC vesicles. The saturation of mixed DPPC/DPPG vesicles requires less bile salt, but to induce the solubilization of the liposomes, significantly higher amounts of bile salt are needed compared to the concentrations required for the solubilization of the pure phospholipid systems. The different solubilization behavior of DPPC/DPPG liposomes compared to the pure liposomes could be due to a specific "extraction" of DPPG into the mixed micelles in the coexistence region.  相似文献   

3.
Aggregation of Islet Amyloid Polypeptide (IAPP) has been implicated in the development of type II diabetes. Because IAPP is a highly amyloidogenic peptide, it has been suggested that the formation of IAPP amyloid fibers causes disruption of the cellular membrane and is responsible for the death of beta-cells during type II diabetes. Previous studies have shown that the N-terminal 1-19 region, rather than the amyloidogenic 20-29 region, is primarily responsible for the interaction of the IAPP peptide with membranes. Liposome leakage experiments presented in this study confirm that the pathological membrane disrupting activity of the full-length hIAPP is also shared by hIAPP 1-19. The hIAPP 1-19 fragment at a low concentration of peptide induces membrane disruption to a near identical extent as the full-length peptide. At higher peptide concentrations, the hIAPP 1-19 fragment induces a greater extent of membrane disruption than the full-length peptide. Similar to the full-length peptide, hIAPP 1-19 exhibits a random coil conformation in solution and adopts an alpha-helical conformation upon binding to lipid membranes. However, unlike the full-length peptide, the hIAPP 1-19 fragment did not form amyloid fibers when incubated with POPG vesicles. These results indicate that membrane disruption can occur independently from amyloid formation in IAPP, and the sequences responsible for amyloid formation and membrane disruption are located in different regions of the peptide.  相似文献   

4.
Differential scanning calorimetric (DSC) experiments have shown that the ability of PrP106-126 to perturb 1,3-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) model membranes is differently affected by Cu(++) and Zn(++) ions.  相似文献   

5.
The effect of adsorption of bovine serum albumin (BSA) on the membrane characteristics of liposomes at pH 7.4 was examined in terms of zeta potential, micropolarity, microfluidity and permeability of liposomal bilayer membranes, where negatively charged L-alpha-dipalmitoylphosphatidylglycerol (DPPG)/L-alpha-dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP)/DPPC and positively charged stearylamine (SA)/DPPC mixed liposomes were used. BSA with negative charges adsorbed on negatively charged DPPG/DPPC mixed liposomes but did not adsorb on negatively charged DCP/DPPC and positively charged SA/DPPC mixed liposomes. Furthermore, the adsorption amount of BSA on the mixed DPPG/DPPC liposomes increased with increasing the mole fraction of DPPG in spite of a possible electrostatic repulsion between BSA and DPPG. Thus, the adsorption of BSA on liposomes was likely to be related to the hydrophobic interaction between BSA and liposomes. The microfluidity of liposomal bilayer membranes near the bilayer center decreased by the adsorption of BSA, while the permeability of liposomal bilayer membranes increased by the adsorption of BSA on liposomes. These results are considered to be due to that the adsorption of BSA brings about a phase separation in liposomes and that a temporary gap is consequently formed in the liposomal bilayer membranes, thereby the permeability of liposomal bilayer membranes increases by the adsorption of BSA.  相似文献   

6.
Ghrelin is a pharmacologically interesting peptide hormone due to its effects on appetite and metabolism. The cationic, octanoylated 28 amino acid peptide has a short biological half‐life; thus, prolonged release formulations are of interest. Acylated peptides have been suggested to bind to or be incorporated into liposomes. Formulations based on neutral dipalmitoylphosphatidylcholine (DPPC) liposomes and phosphatidylcholine:cholesterol (70:30 mol%) liposomes, and negatively charged dipalmitoylphosphatidylcholine:dipalmitoylphosphatidylserine (DPPC:DPPS) (70:30 mol%) liposomes (2 mM total lipid concentration) were characterized using ACE. Pre‐equilibrium CZE and frontal analysis CE methods circumventing capillary wall adsorption of the peptide and the liposomes and suitable for characterizing ghrelin–liposome interactions were developed. The cationic peptide exhibited low affinity (<10% bound) for DPPC and phosphatidylcholine:cholesterol (70:30 mol%) liposomes whereas electrostatic interactions caused a higher affinity for DPPC:DPPS (70:30 mol%) liposomes. Studies on desacyl ghrelin instead of ghrelin demonstrated the significance of the n‐octanoyl side chain as an affinity providing moiety towards DPPC:DPPS liposomes (48 and 73% bound peptide, respectively). CE experiments showed that the binding was characterized by rapid dissociation kinetics.  相似文献   

7.
The fragments of rat amylin rIAPP(17-29) (Ac-VRSSNNLGPVLPP-NH(2)), rIAPP(17-22) (Ac-VRSSNN-NH(2)), rIAPP(19-22) (Ac-SSNN-NH(2)) and rIAPP(17-20) (Ac-VRSS-NH(2)) together with the related mutant peptides (Ac-VASS-NH(2) and Ac-VRAA-NH(2)) have been synthesized and their copper(II) complexes studied by potentiometric, UV-Vis, CD and EPR spectroscopic methods. Despite the lack of any common strongly coordinating donor functions some of these fragments are able to bind copper(II) ions in the physiological pH range. The longest fragment rat amylin(17-29) keeps one equivalent copper(II) ion in solution in the whole pH range, while two other peptides Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) are also able to interact with copper(II) ions in the slightly alkaline pH range. According to the spectral parameters of the complexes, the peptides can be classified into two different categories: (i) the tetrapeptides Ac-VRSS-NH(2), Ac-VASS-NH(2) and Ac-VRAA-NH(2) can interact with copper(II) only under strongly alkaline conditions (pH > 10.0) and the formation of only one species with four amide nitrogen coordination can be detected; (ii) the peptides Ac-VRSSNNLGPVLPP-NH(2), Ac-VRSSNN-NH(2) and Ac-SSNN-NH(2) can form complexes above pH 6.0 with the major stoichiometries [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-). These data support that rIAPP(17-29) can interact with copper(II) ions under physiological conditions and the SSNN tetrapeptide fragment can be considered as the shortest sequence responsible for metal binding. Density functional theory (DFT) calculations provide some information on the possible coordination modes of Ac-SSNN-NH(2) towards the copper(II) ion and suggest that for [CuH(-2)L], [CuH(-3)L](-) and [CuH(-4)L](2-), the binding of two, three and four deprotonated amide nitrogens, with NH(-) of the side chain of asparagine as anchoring group, is probable. Moreover, these data reveal that peptides can be effective metal binding ligands even in the absence of anchoring groups, if more polar side chains are present in a specific sequence.  相似文献   

8.
人胰岛淀粉样蛋白(hIAPP)与Ⅱ型糖尿病(T2DM)密切相关,被认为是导致胰岛β细胞凋亡的致病因素之一,研究发现环境因素(如金属离子、pH值和温度等)对hIAPP的聚集过程有很大影响。本文采用多种生物物理的实验方法,研究了二价铜离子对hIAPP及其片段聚集的影响。原子力显微镜(AFM)和硫代黄素T(ThT)荧光的测量表明,铜离子能够明显地抑制hIAPP(11~28)聚集成纤维,其抑制程度随铜离子浓度的增加而明显加剧。显微傅里叶变换红外光谱(Micro-FTIR)的结果表明,铜离子能够抑制hIAPP多肽中α螺旋结构向β折叠的转变。另外,氨基酸定点突变实验结果表明,hIAPP(11~28)中的组氨酸(His18)可能对多肽的聚集行为和金属铜离子的相互作用起到了决定性的影响。  相似文献   

9.
To obtain information about the factors governing spontaneous inter-membrane protein transfer, we examined the effects of incorporation of various amphiphilic compounds in dimyristoylphosphatidylcholine (DMPC) liposomes on protein transfer from influenza virus-infected cells to the liposomes, and analyzed the physical properties of these liposome membranes. The incorporation of amphiphilic compounds, negatively charged dicetylphosphate (DCP), dipalmitoylphosphatidylserine (DPPS) or positively charged dimethyldipalmitoylammonium (DMDPA), into DMPC liposomal membranes enhanced protein transfer. The liposomes containing DCP, DPPS or DMDPA were unaffected by osmotic shock caused by external addition of glucose, suggesting a decrease in lipid packing in the liposomal membranes. Furthermore, calorimetric study of these liposomes showed that a phase separation occurred partially in the liposomal membranes. Accordingly, the membranes of DMPC liposomes containing DCP, DPPS and DMDPA should be distorted due to the coexistence of two phases, gel and liquid crystalline, in the membranes. Consequently, the membrane distortion could be responsible for the enhancement effects of the amphiphiles on the inter-membrane protein transfer from influenza virus-infected cells to the liposomes.  相似文献   

10.
The present work examines the relationship between the antimicrobial activity of novel arginine-based cationic surfactants and the physicochemical process involved in the perturbation of the cell membrane. To this end, the interaction of these surfactants with two biomembrane models, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar lipid vesicles (MLVs) and monolayers of DPPC, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DPPG), and Escherichia coli total lipid extract, was investigated. For the sake of comparison, this study included two commercial antimicrobial agents, hexadecyltrimethylammonium bromide and chlorhexidine dihydrochloride. Changes in the thermotropic phase transition parameters of DPPC MLVs in the presence of the compounds were studied by differential scanning calorimetry analysis. The results show that variations in both the transition temperature (Tm) and the transition width at half-height of the heat absorption peak (deltaT1/2) were consistent with the antimicrobial activity of the compounds. Penetration kinetics and compression isotherm studies performed with DPPC, DPPG, and E. coli total lipid extract monolayers indicated that both steric hindrance effects and electrostatic forces explained the antimicrobial agent-lipid interaction. Overall, in DPPC monolayers single-chain surfactants had the highest penetration capacity, whereas gemini surfactants were the most active in DPPG systems. The compression isotherms showed an expansion of the monolayers compared with that of pure lipids, indicating an insertion of the compounds into the lipid molecules. Owing to their cationic character, they are incorporated better into the negatively charged DPPG than into zwitterionic DPPC lipid monolayers.  相似文献   

11.
The conformation change picture of human islet amyloid polypeptide (hIAPP) is outlined using molecular dynamics simulation, and the structural influences of L16Q, S20G, and L16Q‐S20G mutations on the conformation of hIAPP are analyzed. Particularly, the conformational changes of the amyloidogenic‐related regions of residues 15–17 and 20–29 are emphasized. Our studies find that, for WT hIAPP, residues 15–17 always maintain a stable α‐helix structure, residues 20–25 structurally fluctuate between turn and 5‐helix, and residues 26–29 mainly adopt coil and bend structures. The hydrogen bonds between the polar groups of hIAPP, long‐rang van der Waals forces between the residues, and hydrophobic interactions between the residues of hIAPP are important driving forces to maintain the secondary structure of hIAPP. The replacement of leucine16 by glutamine stabilizes the helix structure of residues 15–17 and 20–23 of hIAPP monomer, and the structure of residues 24–29 fluctuates between helix and turn. The relatively stable helix structures of residues 15–17 and 20–29 are supposed to be beneficial for L16Q hIAPP to resist the aggregation as observed in the experiment. The substitution of serine20 by glycine drives residues 15–17 and 20–29 of hIAPP to transform from helix structure to β‐strands or coil structures with higher extension and flexibility, which may promote the aggregation of hIAPP as the experiments reported. These results are significant to understand the aggregation mechanism of hIAPP monomer into the dimer, trimer, oligomers and fibrils associated with the type 2 diabetes at the atomic level.  相似文献   

12.
Sifuvirtide, a 36 amino acid negatively charged peptide, is a novel and promising HIV fusion inhibitor, presently in clinical trials. Because of the aromatic amino acid residues of the peptide, its behavior in aqueous solution and the interaction with lipid-membrane model systems (large unilammelar vesicles) were studied by using mainly fluorescence spectroscopy techniques (both steady-state and time-resolved). No significant aggregation of the peptide was observed with aqueous solution. Various biological and nonbiological lipid-membrane compositions were analyzed, and atomic force microscopy was used to visualize phase separation in several of those mixtures. Results showed no significant interaction of the peptide, neither with zwitterionic fluid lipid membranes (liquid-disordered phase), nor with cholesterol-rich membranes (liquid-ordered phase). However, significant partitioning was observed with the positively charged lipid models (K(p) = (2.2 +/- 0.3) x 10(3)), serving as a positive control. Fluorescence quenching using F?rster resonance acrylamide and lipophilic probes was carried out to study the location of the peptide in the membrane models. In the gel-phase DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) membrane model, an adsorption of the peptide at the surface of these membranes was observed and confirmed by using F?rster resonance energy-transfer experiments. These results indicate a targeting of the peptide to gel-phase domains relatively to liquid-disordered or liquid-ordered phase domains. This larger affinity and selectivity toward the more rigid areas of the membranes, where most of the receptors are found, or to viral membrane, may help explain the improved clinical efficiency of sifuvirtide, by providing a local increased concentration of the peptide at the fusion site.  相似文献   

13.
We assess the role of lateral tension in rupturing anionic dipalmitoylphosphatidyserine (DPPS), neutral dipalmitoylphosphatidylcholine (DPPC), and mixed DPPS-DPPC vesicles. Binding of Ca(2+) is known to have a significant impact on the effective size of DPPS lipids and little effect on the size of DPPC lipids in bilayer structures. In the present work we utilized laser transmission spectroscopy (LTS) to assess the effect of Ca(2+)-induced stress on the stability of the DPPS and DPPC vesicles. The high sensitivity and resolution of LTS has permitted the determination of the size and shape of liposomes in solution. The results indicate a critical size after which DPPS single shell vesicles are no longer stable. Our measurements indicate Ca(2+) promotes bilayer fusion up to a maximum diameter of ca. 320 nm. These observations are consistent with a straightforward free-energy-based model of vesicle rupture involving lateral tension between lipids regulated by the binding of Ca(2+). Our results support a critical role of lateral interactions within lipid bilayers for controlling such processes as the formation of supported bilayer membranes and pore formation in vesicle fusion. Using this free energy model we are able to infer a lower bound for the area dilation modulus for DPPS (252 pN/nm) and demonstrate a substantial free energy increase associated with vesicle rupture.  相似文献   

14.
Dipalmitoylphosphatidylcholine (DPPC) liposomes were employed as membrane models for the investigation of the interaction occurring between methotrexate (MTX) and bilayer lipid matrix. Liposomes were obtained by hydrating a lipid film with 50 mM Tris buffer (pH 7.4). The differential scanning calorimetry (DSC) evaluation of the thermotropic parameters associated with the phase transitions of DPPC liposomes gave useful information about the kind of drug-membrane interaction. The results showed an electrostatic interaction taking place with the negatively charged molecules of MTX and the phosphorylcholine head groups, constituting the outer part of DPPC bilayers. No interaction with the hydrophobic phospholipid bilayer domains was detected, revealing a poor capability of MTX to cross through lipid membranes to reach the interior compartment of a lipid bounded structure. These findings correlate well within vitro biological experiments on MTX cell susceptibility.  相似文献   

15.
A growing body of literature suggests that fluorocarbons can direct self-assembly within hydrocarbon environments. We report here the fabrication and characterization of supported lipid bilayers (SLBs) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a synthetic, fluorocarbon-functionalized analogue, 1. AFM investigation of these model membranes reveals an intricate, composition-dependent domain structure consisting of approximately 50 nm stripes interspersed between approximately 1 microm sized domains. Although DSC of 1 showed a phase transition near room temperature, DSC of DPPC:1 mixtures exhibited complex phase behavior suggesting domain segregation. Finally, temperature-dependent AFM of DPPC:1 bilayers shows that, while the stripe structures can be melted above the Tm of 1, the stripes and domains result from immiscibility of the hydrocarbon and fluorocarbon lipid gel phases. Fluorination appears to be a promising strategy for chemical self-assembly in two dimensions. In particular, because no modification is made to the lipid headgroups, it may be useful for nanopatterning biologically relevant ligands on bilayers in vitro or in living cells.  相似文献   

16.
We have monitored the environment and dynamics of the membrane interface formed by the ester-linked phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the ether-linked phospholipid 1,2-dihexadecyl-sn-glycero-3-phosphocholine (DHPC) utilizing the wavelength-selective fluorescence approach and using the fluorescent membrane probe 2-(9-anthroyloxy)stearic acid (2-AS). This interfacially localized probe offers a number of advantages over those which lack a fixed location in the membrane. When incorporated in membranes formed by DPPC and DHPC, 2-AS exhibits red edge excitation shift (REES) of 14 and 8 nm, respectively. This implies that the rate of solvent reorientation, as sensed by the interfacial anthroyloxy probe, in ester-linked DPPC membranes is slow compared to the rate of solvent reorientation in ether-linked DHPC membranes. In addition, the fluorescence polarization values of 2-AS are found to be higher in DHPC membranes than in DPPC membranes. This is further supported by wavelength-dependent changes in fluorescence polarization and lifetime. Taken together, these results are useful in understanding the role of interfacial chemistry on membrane physical properties.  相似文献   

17.
Early oligomerization of human IAPP (hIAPP) is responsible for β-cell death in the pancreas and is increasingly considered a primary pathological process linked to Type II Diabetes (T2D). Yet, the assembly mechanism remains poorly understood, largely due to the inability of conventional techniques to probe distributions or detailed structures of early oligomeric species. Here, we describe the first experimental data on the isolated and unmodified dimers of human (hIAPP) and nonamyloidogenic rat IAPP (rIAPP). The experiments reveal that the human IAPP dimers are more extended than those formed by rat IAPP and likely descend from extended monomers. Independent all-atom molecular dynamics simulations show that rIAPP forms compact helix and coil rich dimers, whereas hIAPP forms β-strand rich dimers that are generally more extended. Also, the simulations reveal that the monomer-monomer interfaces of the hIAPP dimers are dominated by β-strands and that β-strands can recruit coil or helix structured regions during the dimerization process. Our β-rich interface contrasts with an N-terminal helix-to-helix interface proposed in the literature but is consistent with existing experimental data on the self-interaction pattern of hIAPP, mutation effects, and inhibition effects of the N-methylation in the mutation region.  相似文献   

18.
Vibrational sum frequency generation spectroscopy is used to study the interactions of the charged soluble organic surfactant sodium dodecyl sulfate (SDS) with an insoluble 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer at the air-aqueous interface. Results indicate that the surfactant species compete for surface sites in the mixed system, with a lower monolayer number density of DPPC molecules being observed in the presence of dodecyl sulfate anions at the interface. Spectroscopic results also indicate that fewer dodecyl sulfate chains reside at the interface when the insoluble DPPC film is present. Increased conformational ordering of the acyl chains of both the DPPC molecules and the interfacial dodecyl sulfate anions is observed in the mixed system. Additionally, charged surfactant SDS promotes the alignment of the interfacial water molecules even in the presence of a DPPC monolayer.  相似文献   

19.
The metal ion binding sites of human islet amyloid polypeptide (hIAPP) have been investigated to explain the biological activity difference in the fibril formation process. The structures of [hIAPP...Cu (or Al)](n+) and [hIAPP17-30...Cu]2+ complex were investigated by electrospray ionization-mass spectrometry (ESI-MS). The fragmentation patterns of [hIAPP...Cu [or Al)](n+) and [hIAPP17-30...Cu]2+ complex were analyzed by tandem mass spectrometry (MS/MS) and multi-stage mass spectrometry (MS3) spectra. The [hIAPP+Cu+H]3+, [hIAPP+Al+H]4+ and [hIAPP17-30+Cu]2+ complexes were observed in MS spectra. The Cu binding site of hIAPP is suggested to be the N22-F-G-A-I26 part for the [hIAPP+Cu+H]3+ gas-phase complex. The original hIAPP conformation was supposed to be changed by the interaction between the Cu ion and the N22-F-G-A-I26 part in the [hIAPP+Cu+H]3+ gas-phase complex.  相似文献   

20.
孙润广  郝长春  常怡光  张静  牛春玲 《化学学报》2009,67(15):1808-1814
鞘氨醇(sphingosine)是生物体内合成鞘脂的母体化合物, 是生物膜中的重要组分之一. 通过分析表面压力和平均分子面积(π-A)等温线数据分别研究了鞘氨醇与二棕榈酰基磷脂酰胆碱(DPPC)和二棕榈酰基磷脂酰乙醇胺(DPPE)二元组分单层膜的热力学特性, 并在恒定膜压下制备不同摩尔比例的混合脂膜用原子力显微镜进行观测. 实验结果表明: (1)鞘氨醇与DPPC组成的系统中, XD-Sph=0.2, 0.4, 0.6时, 过量分子面积与过量吉布斯自由能在所研究的表面压力下表现为负值, 而当XD-Sph=0.8时, 表现为正值; (2)鞘氨醇与DPPE组成的系统中, 当表面压力 π<25 mN&#8226;m-1时, 过量分子面积与过量吉布斯自由能在所研究的组分比例下表现为负值, 当π≥25 mN&#8226;m-1时为正值. 混合单层膜的分子面积与表面吉布斯自由能决定了分子间的相互作用, 当为负值时分子间相互作用表现为吸引力, 出现凝聚现象; 为正值时分子间相互作用表现为排斥力, 促使单层膜出现相分离现象. 过量吉布斯自由能值越小, 单层膜的热稳定性越高. 弹性系数曲线分析和AFM图片观测进一步验证了理论分析的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号