首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This paper presents a new algorithm for integer programming with bounded variables which is efficient when m < n and when the upper bounds on the variables are small. The main idea is the application of the Balas and Jeroslow canonical hyperplanes and the systematic search of integer points over certain faces of the feasible region. During each iteration the integer points on a certain face are examined, and then this whole face is discarded from the feasible region of a linear programming problem. After a bounded number of iterations, the optimal integer solution is found, if one exists.  相似文献   

2.
This paper considers a multicast routing problem to find the minimum cost tree where the whole communication link delay on each path(route) of the tree is subject to a given delay allowance. The problem is formulated as an integer programming problem by using path variables. An associated problem reduction property is then characterised to reduce the solution space. Moreover, a polynomial time column generation procedure is exploited to solve the associated linear programming relaxation with such solution space reduced. Therefore a branch-and-price algorithm is derived to obtain the optimal integer solution(tree) for the problem. Computational results show that the algorithm can solve practical size problems in a reasonable length of time.  相似文献   

3.
Deployed US Navy aircraft carriers must stock a large number of spare parts to support the various types of aircraft embarked on the ship. The sparing policy determines the spares that will be stocked on the ship to keep the embarked aircraft ready to fly. Given a fleet of ten or more aircraft carriers and a cost of approximately 50 million dollars per carrier plus the cost of spares maintained in warehouses in the United States, the sparing problem constitutes a significant portion of the Navy’s resources. The objective of this work is to find a minimum-cost sparing policy that meets the readiness requirements of the embarked aircraft. This is a very large, nonlinear, integer optimization problem. The cost function is piecewise linear and convex while the constraint mapping is highly nonlinear. The distinguishing characteristics of this problem from an optimization viewpoint are that a large number of decision variables are required to be integer and that the nonlinear constraint functions are essentially “black box” functions; that is, they are very difficult (and expensive) to evaluate and their derivatives are not available. Moreover, they are not convex. Integer programming problems with a large number of variables are difficult to solve in general and most successful approaches to solving nonlinear integer problems have involved linear approximation and relaxation techniques that, because of the complexity of the constraint functions, are inappropriate for attacking this problem. We instead employ a pattern search method to each iteration of an interior point-type algorithm to solve the relaxed version of the problem. From the solution found by the pattern search on each interior point iteration, we begin another pattern search on the integer lattice to find a good integer solution. The best integer solution found across all interations is returned as the optimal solution. The pattern searches are distributed across a local area network of non-dedicated, heterogeneous computers in an office environment, thus, drastically reducing the time required to find the solution.  相似文献   

4.
We present a Lagrangean decomposition to study integer nonlinear programming problems. Solving the dual Lagrangean relaxation we have to obtain at each iteration the solution of a nonlinear programming with continuous variables and an integer linear programming. Decreasing iteratively the primal—dual gap we propose two algorithms to treat the integer nonlinear programming.This work was partially supported by CNPq and FINEP.  相似文献   

5.
This paper presents a solution method for the general (mixed integer) parametric linear complementarity problem pLCP(q(θ),M), where the matrix M has a general structure and integrality restriction can be enforced on the solution. Based on the equivalence between the linear complementarity problem and mixed integer feasibility problem, we propose a mixed integer programming formulation with an objective of finding the minimum 1-norm solution for the original linear complementarity problem. The parametric linear complementarity problem is then formulated as multiparametric mixed integer programming problem, which is solved using a multiparametric programming algorithm. The proposed method is illustrated through a number of examples.  相似文献   

6.
Several algorithms to solve the generalized fractional program are summarized and compared numerically in the linear case. These algorithms are iterative procedures requiring the solution of a linear programming problem at each iteration in the linear case. The most efficient algorithm is obtained by marrying the Newton approach within the Dinkelbach approach for fractional programming.  相似文献   

7.
Regulation of Overlaps in Technology Development Activities   总被引:6,自引:0,他引:6  
In this paper, we present an algorithm for the solution of multiparametric mixed integer linear programming (mp-MILP) problems involving (i) 0-1 integer variables, and, (ii) more than one parameter, bounded between lower and upper bounds, present on the right hand side (RHS) of constraints. The solution is approached by decomposing the mp-MILP into two subproblems and then iterating between them. The first subproblem is obtained by fixing integer variables, resulting in a multiparametric linear programming (mp-LP) problem, whereas the second subproblem is formulated as a mixed integer linear programming (MILP) problem by relaxing the parameters as variables.  相似文献   

8.
The reachability problem for linear time-invariant discrete-time control systems with sign-restricted input is considered. The time-optimal control is constructed by an iterative procedure. Each step of the iteration is defined as a linear programming problem. This problem is solved by the simplex algorithm. The initial feasible solution for the simplex algorithm is provided by the preceding step of the iteration. The inversion of the basis matrix is reduced to a bordering procedure. The structural stability of the solution is investigated.  相似文献   

9.
The so called dual parameterization method for quadratic semi-infinite programming (SIP) problems is developed recently. A dual parameterization algorithm is also proposed for numerical solution of such problems. In this paper, we present and improved adaptive algorithm for quadratic SIP problems with positive definite objective and multiple linear infinite constraints. In each iteration of the new algorithm, only a quadratic programming problem with a limited dimension and a limited number of constraints is required to be solved. Furthermore, convergence result is given. The efficiency of the new algorithm is shown by solving a number of numerical examples.  相似文献   

10.
This paper discusses a one-dimensional cutting stock problem in which lumber is cut in bundles. The nature of this problem is such that the traditional approaches of linear programming with an integer round-up procedure or sequential heuristics are not effective. A good solution to this problem must consider trim loss, stock usage and ending inventory levels. A genetic search algorithm is proposed and results compared to optimal solutions for an integer programming formulation of the problem.  相似文献   

11.
本文探讨了一类N车探险问题的近似算法,首先通过建模将N车问题转变为一个等价的非线性0-1混合整数规划问题,进而将该非线性0-1混合整数规划问题转化为一个一般的带约束非线性规划问题,并用罚函数的方法将得到的带约束非线性规划问题化为相应的无约束问题.我们证明了可通过求解该无约束非线性规划问题得到原N车问题的ε-近似度的近似解,并设计了-个收敛速度为二阶的迭代箅法,文章最后给出算法实例.  相似文献   

12.
We present an interior point approach to the zero–one integer programming feasibility problem based on the minimization of a nonconvex potential function. Given a polytope defined by a set of linear inequalities, this procedure generates a sequence of strict interior points of this polytope, such that each consecutive point reduces the value of the potential function. An integer solution (not necessarily feasible) is generated at each iteration by a rounding scheme. The direction used to determine the new iterate is computed by solving a nonconvex quadratic program on an ellipsoid. We illustrate the approach by considering a class of difficult set covering problems that arise from computing the 1-width of the incidence matrix of Steiner triple systems.  相似文献   

13.
We present an algorithm for generating a subset of non-dominated vectors of multiple objective mixed integer linear programming. Starting from an initial non-dominated vector, the procedure finds at each iteration a new one that maximizes the infinity-norm distance from the set dominated by the previously found solutions. When all variables are integer, it can generate the whole set of non-dominated vectors.  相似文献   

14.
We consider the problem of obtaining integer solutions to a minmax linear programming problem. Although this general problem is NP-complete, it is shown that a restricted version of this problem can be solved in polynomial time. For this restricted class of problems two polynomial time algorithms are suggested, one of which is strongly polynomial whenever its continuous analogue and an associated linear programming problem can be solved by a strongly polynomial algorithm. Our algorithms can also be used to obtain integer solutions for the minmax transportation problem with an inequality budget constraint. The equality constrained version of this problem is shown to be NP-complete. We also provide some new insights into the solution procedures for the continuous minmax linear programming problem.  相似文献   

15.
We investigate the problem of scheduling N jobs on parallel identical machines in J successive stages with finite buffer capacities between consecutive stages in a real-time environment. The objective is to find a schedule that minimizes the sum of weighted completion time of jobs. This problem has proven strongly NP-hard. In this paper, the scheduling problem is formulated as an integer programming model considering buffers as machines with zero processing time. Lagrangian relaxation algorithms are developed combined with a speed-up dynamic programming approach. The complication and time consumption of solving all the subproblems at each iteration in subgradient optimization motivate the development of the surrogate subgradient method, where only one subproblem is minimized at each iteration and an adaptive multiplier update scheme of Lagrangian multipliers is designed. Computational experiments with up to 100 jobs show that the designed surrogate subgradient algorithm provides a better performance as compared to the subgradient algorithm.  相似文献   

16.
The airline crew scheduling problem is the problem of assigning crew itineraries to flights. We develop a new approach for solving the problem that is based on enumerating hundreds of millions random pairings. The linear programming relaxation is solved first and then millions of columns with best reduced cost are selected for the integer program. The number of columns is further reduced by a linear programming based heuristic. Finally an integer solution is obtained with a commercial integer programming solver. The branching rule of the solver is enhanced with a combination of strong branching and a specialized branching rule. The algorithm produces solutions that are significantly better than ones found by current practice.  相似文献   

17.
A readily implementable algorithm is proposed for minimizing any convex, not necessarily differentiable, function f of several variables subject to a finite number of linear constraints. The algorithm requires only the calculation of f at designated feasible points. At each iteration a lower polyhedral approximation to f is constructed from a few previously calculated subgradients and an aggregate subgradient. The recursively updated aggregate subgradient accumulates the subgradient information to deal with nondifferentiability of f. The polyhedral approximation and the linear constraints generate constraints in the search direction finding subproblem that is a quadratic programming problem. Then a step length is found by approximate line search. It is shown that the algorithm converges to a solution, if any.  相似文献   

18.
We present branching-on-hyperplane methods for solving mixed integer linear and mixed integer convex programs. In particular, we formulate the problem of finding a good branching hyperplane using a novel concept of adjoint lattice. We also reformulate the problem of rounding a continuous solution to a mixed integer solution. A worst case complexity of a Lenstra-type algorithm is established using an approximate log-barrier center to obtain an ellipsoidal rounding of the feasible set. The results for the mixed integer convex programming also establish a complexity result for the mixed integer second order cone programming and mixed integer semidefinite programming feasibility problems as a special case. Our results motivate an alternative reformulation technique and a branching heuristic using a generalized (e.g., ellipsoidal) norm reduced basis available at the root node.  相似文献   

19.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

20.
In this article we look at a new algorithm for solving convex mixed integer nonlinear programming problems. The algorithm uses an integrated approach, where a branch and bound strategy is mixed with solving nonlinear programming problems at each node of the tree. The nonlinear programming problems, at each node, are not solved to optimality, rather one iteration step is taken at each node and then branching is applied. A Sequential Cutting Plane (SCP) algorithm is used for solving the nonlinear programming problems by solving a sequence of linear programming problems. The proposed algorithm generates explicit lower bounds for the nodes in the branch and bound tree, which is a significant improvement over previous algorithms based on QP techniques. Initial numerical results indicate that the described algorithm is a competitive alternative to other existing algorithms for these types of problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号