首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The complexes of trivalent actinide curium (Cm(III)) with di(chlorophenyl)dithiophosphinic acid ((ClPh)2PSSH) and three different neutral complexing agents as synergists in tert-butylbenzene are studied by EXAFS and time-resolved laser fluorescence spectroscopy (TRLFS). The results are compared with those from the corresponding europium (Eu(III)) complexes. The aim of these investigations is to understand the chemical interactions responsible for the high selectivity of the synergistic systems of (ClPh)2PSSH and neutral complexing agents tri-n-octylphosphine oxide, tributylphosphate and tris(2-ethylhexyl)phosphate for trivalent actinide cations in liquid-liquid extraction. In our structural chemistry study, we find that the inner coordination sphere of extracted Cm(III) and Eu(III) complexes are different. In all complexes the (ClPh)2PSSH is bound to the metal cation in a bidentate fashion and the oxygen donor of the neutral complexing agent used as synergist is directly coordinated to the metal cation. Comparison of the Cm(III) and Eu(III) complexes shows that Cm(III) preferentially binds to the sulfur of (ClPh)2PSSH, whereas Eu(III) is preferentially bound to oxygen. A good selectivity in liquid-liquid extraction is correlated with a high ratio of the sulfur coordination number to oxygen coordination number. This leads to the conclusion that the observed differences in the coordination structure between Cm(III) and Eu(III) complexes play an important role in the selectivity of these extraction systems.  相似文献   

2.
The luminescent and lasing properties of Eu(III) complexes were enhanced by using an dissymmetric Eu(III) complex. The photophysical properties (the emission spectral shapes, the emission lifetimes, the emission quantum yields, and the stimulated emission cross section (SEC)) were found to be dependent on the geometrical structures of Eu(III) complexes. The geometrical structures of Eu(III) complexes were determined by X-ray single crystal analyses. The symmetrical group of Eu(hfa)3(BIPHEPO) (tris(hexafluoroacetylacetonato)europium(III) 1,1'-biphenyl-2,2'-diylbis(diphenylphosphine oxide)) was found to be C1, which was more dissymmetric than Eu(hfa)3(TPPO)2 (tris(hexafluoroacetylacetonato)europium(III) 1,2-phenylenebis(diphenylphosphine oxide): C2 symmetry) and Eu(hfa)3(OPPO)2 (tris(hexafluoroacetylacetonato)europium(III) 1,2-phenylenebis(diphenylphosphine oxide): C2 symmetry). The analytical data were supported by Judd-Ofelt analysis. The most dissymmetrical Eu(III) complex, Eu(hfa)3(BIPHEPO), showed large electron transition probability and large SEC (4.64 x 10(-20) cm2). The SEC of Eu(hfa)3(BIPHEPO) was superior to even the values of Nd-glass laser for practical use (1.6-4.5 x 10(-20) cm2). The lasing properties of Eu(III) complexes in polymer thin film were measured by photopumping of a Nd:YAG laser (355 nm). The threshold energy of lasing oscillation was found to be 0.05 mJ. The increasing rate of the lasing intensity of Eu(hfa)3(BIPHEPO) as a function of the excitation energy was much larger than that of Eu(hfa)3(TPPO)2 and Eu(hfa)3(OPPO)2. The dissymmetrical structure of Eu(hfa)3(BIPHEPO) promoted the enhancement of the lasing property.  相似文献   

3.
The number of water molecules in the inner-sphere (N(H2O)) was determined for Eu(III) and the strength of ligand field (R(E/M)) was evaluated for a variety of coordination environments from the luminescence lifetime and the relative intensity at 615 nm and at 592 nm, by time-resolved laser-induced fluorescence spectroscopy. When R(E/M) and deltaN(H2O) for Eu(III) with a known coordination environment were plotted clear regularity was apparent between the location of the R(E/M)-deltaN(H2O) plot and the coordination environment of Eu(III). Here, deltaN(H2O) was calculated by use of the equation, deltaN(H2O)=9-N(H2O). Unknown coordination environments of Eu(III) can, in turn, be characterized, including both the inner- and the outer-sphere, simply by plotting R(E/M) and deltaN(H2O) for Eu(III) on the diagram. This empirical method is effective for prediction of the coordination environment of hydrated and complexed Eu(III) in solutions and that of the adsorbed Eu(III) on ion-exchange resins and by microorganisms.  相似文献   

4.
The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall −1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.  相似文献   

5.
The structure of the extraction complexes of light lanthanides (La(III), Nd(III), Eu(III)) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HBTMPDTP) have been characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), IR, and MS; the IR spectrum of the extraction complex of (241)Am with HBTMPDTP has been studied too. The molecular formula of the extraction complexes of lanthanides is deduced to be HML(4).H(2)O (M = La, Nd, Eu; L = anion of HBTMPDTP). The coordination number of Ln(III) in the complexes is 8; the coordinated donor atoms are 7 sulfur atoms from 4 HBTMDTP molecules and 1 O atom from a hydrated water molecule. With the increase of the atomic number of Ln, the coordination bond lengths of Ln-O and Ln-S decrease in the complexes. For La(III), Nd(III), and Eu(III), the coordination bond lengths of Ln-O are 2.70, 2.56, and 2.50, respectively, the coordination bond lengths of Ln-S are 3.01, 2.91, and 2.84, respectively, and the average distances between Ln and P atoms are 3.60, 3.53, and 3.46, respectively. The structure of the extraction complexes of Ln(III) with HBTMDTP is different from that of the Am(III) extraction complex. The results of IR show that there is no water coordinated with Am in the extraction complex. The molecular formula of the complex of Am(III) is deduced as being HAmL(4), and there are 8 S atoms from 4 HBTMPDTP molecules coordinated with Am. Composition and structure differences of the extraction complexes may be one of the most most important factors affecting the excellent selectivity of HBTMPDTP for Am(III) over Ln(III).  相似文献   

6.
The chelate phosphine oxide ligand bis(2-(diphenylphosphino)phenyl) ether oxide (DPEPO) was used as a unit neutral ligand to prepare the complex Eu(TTA)(3)(DPEPO) 1 (TTA = 2-thenoyltrifluoroacetonate). Compound 1 has a photoluminescence (PL) quantum yield of 55.3%, which is more than the twice of the PL quantum yield of Eu(TTA)(3)(TPPO)(2) (TPPO = triphenylphosphine oxide). Investigation indicated that DPEPO in 1 has the mezzo first triplet excited energy level (T(1)) between the first singlet excited energy level (S(1)) and T(1) of TTA, which may support one more additional energy transfer routines from the T(1) energy level of DPEPO to that of TTA, and consequently results in the improvement of energy transfer in the Eu(III) complex. DPEPO forms a complex with a more rigid and compact structure that can improve energy transfer between ligands and the center Eu(III) ion, support the higher saturation level by the coordinating ability of the oxygen atom in the ether moiety, and consequently enhance the PL intensity and efficiency of the corresponding Eu(III) complex. The multilayered electroluminescent (EL) device of 1 used as the red dopant exhibited an impressive brightness of 632 cd m(-2) at 25 V. The device had the excellent voltage-independent spectral stability with an emission peak at 615 nm. To the best of our knowledge, this luminescence is the brightest emission among Eu complexes with phosphine oxide ligands. The maximum external quantum yield (eta(ext)) of 2.89% and the maximum current and power efficiency of 4.58 cd A(-1) and 2.05 lm W(-1) were achieved at a low turn-on voltage of 7 V and current density of 0.021 mA cm(-2). These properties demonstrate that the chelate phosphine oxides ligand DPEPO can not only be favorable to form the rigid and compact complex structure and increase the efficiency of devices, but also reduce the ability of the formation of exciplex. DPEPO shows much better performance compared with the ordinary phosphine oxide ligand triphenylphosphine oxide.  相似文献   

7.
Dinuclear europium(III) complexes of the macrocycles 1,3-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-m-xylene (1), 1,4-bis[1-(4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane]-p-xylene (2), and mononuclear europium(III) complexes of macrocycles 1-methyl-,4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (3), 1-[3'-(N,N-diethylaminomethyl)benzyl]-4,7,10-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (4), and 1,4,7-tris(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (5) were prepared. Studies using direct excitation ((7)F0 --> (5)D0) europium(III) luminescence spectroscopy show that each Eu(III) center in the mononuclear and dinuclear complexes has two water ligands at pH 7.0, I = 0.10 M (NaNO3) and that there are no water ligand ionizations over the pH range of 7-9. All complexes promote cleavage of the RNA analogue 2-hydroxypropyl-4-nitrophenyl phosphate (HpPNP) at 25 degrees C (I = 0.10 M (NaNO3), 20 mM buffer). Second-order rate constants for the cleavage of HpPNP by the catalysts increase linearly with pH in the pH range of 7-9. The second-order rate constant for HpPNP cleavage by the dinuclear Eu(III) complex (Eu2(1)) at pH 7 is 200 and 23-fold higher than that of Eu(5) and Eu(3), respectively, but only 7-fold higher than the mononuclear complex with an aryl pendent group, Eu(4). This shows that the macrocycle substituent modulates the efficiency of the Eu(III) catalysts. Eu2(1) promotes cleavage of a dinucleoside, uridylyl-3',5'-uridine (UpU) with a second-order rate constant at pH 7.6 (0.021 M(-1) s(-1)) that is 46-fold higher than that of the mononuclear Eu(5) complex. Methyl phosphate binding to the Eu(III) complexes is energetically most favorable for the best catalysts, and this supports an important role for the catalyst in stabilization of the developing negative charge on the phosphorane transition state. Despite the formation of a bridging phosphate ester between the two Eu(III) centers in Eu2(1) as shown by luminescence spectroscopy, the two metal ion centers are only weakly cooperative in cleavage of RNA and RNA analogues.  相似文献   

8.
The N-donor complexing ligand 2,6-bis(5-(2,2-dimethylpropyl)-1H-pyrazol-3-yl)pyridine (C5-BPP) was synthesized and screened as an extracting agent selective for trivalent actinide cations over lanthanides. C5-BPP extracts Am(III) from up to 1 mol/L HNO(3) with a separation factor over Eu(III) of approximately 100. Due to its good performance as an extracting agent, the complexation of trivalent actinides and lanthanides with C5-BPP was studied. The solid-state compounds [Ln(C5-BPP)(NO(3))(3)(DMF)] (Ln = Sm(III), Eu(III)) were synthesized, fully characterized, and compared to the solution structure of the Am(III) 1:1 complex [Am(C5-BPP)(NO(3))(3)]. The high stability constant of log β(3) = 14.8 ± 0.4 determined for the Cm(III) 1:3 complex is in line with C5-BPP's high distribution ratios for Am(III) observed in extraction experiments.  相似文献   

9.
In this paper, multicolored micelles were prepared by coordination of lanthanide(III) (europium(III) (Eu(III)) and terbium(III) (Tb(III))) ions with block copolymer in different molar ratios of n Eu(III)/n Tb(III). The micelles formed by polymer–Eu(III)/Tb(III) could emit higher quantum yield luminescence than the mixture of polymer–Eu(III) micelles and polymer–Tb(III) micelles. The micelles containing Eu(III) and Tb(III) could emit a yellow-green color, and the intensity varied with the molar ratios of n Eu(III)/n Tb(III). In the constant concentrations of Eu(III) and 1,10-phenanthroline (Phen), the intensity of 5D07F2 increased with the addition of Tb(III), and the intensity of 5D47F5 decreased with the increasing of Eu(III) in the constant concentrations of Tb(III) and Phen. All the multicolored micelles could be spin-coated as intensity-tunable films.  相似文献   

10.
Separation of trivalent lanthanides (Ln(III)) and actinides (An(III)) is a key issue in the advanced spent nuclear fuel reprocessing. In the well-known trivalent actinide lanthanide separation by phosphorus reagent extraction from aqueous komplexes (TALSPEAK) process, the organophosphorus ligand HDEHP (di-(2-ethylhexyl) phosphoric acid) has been used as an efficient reagent for the partitioning of Ln(III) from An(III) with the combination of a holdback reagent in aqueous lactate buffer solution. In this work, the structural and electronic properties of Eu3+ and Am3+ complexes with HDEHP in nitric acid solution have been systematically explored by using scalar-relativistic density functional theory (DFT). It was found that HDEHP can coordinate with M(III) (M=Eu, Am) cations in the form of hydrogen-bonded dimers HL2- (L=DEHP), and the metal ions prefer to coordinate with the phosphoryl oxygen atom of the ligand. For all the extraction complexes, the metal-ligand bonds are mainly ionic in nature. Although Eu(III) complexes have higher interaction energies, the HL2- dimer shows comparable affinity for Eu(III) and Am(III) according to thermodynamic analysis, which may be attributed to the higher stabilities of Eu(III) nonahydrate. It is expected that this work could provide insightful information on the complexation of An(III) and Ln(III) with HDEHP at the molecular level.  相似文献   

11.
The luminescence of thenoyltrifluoroacetonate (TTA) coordination complexes of trivalent europium ion (Eu(III)) in aqueous solutions and in solid-state polymeric films is probed upon single- and two-photon preresonant excitation with Ti:sapphire femtosecond laser. Particularly, diamine-liganded Eu(III)(TTA)3 and poly(oxyethylene phosphate)tris(β-diketonate)Eu(III) complexes are examined aiming their possible applications as luminescent labels for sensing and imaging of biological molecules. Even at a pre-resonance, the excitation of these compounds with high-intensity, broadband light of frequency-doubled Ti:sapphire femtosecond laser centered around 400 nm results in a luminescence response suitable for fluorometric applications.  相似文献   

12.
A judicious change in the selected transition used for circular polarization excitation will overcome the low oscillator strength limitation of the currently allowed magnetic-dipole (5)D1 <-- (7)F2 (Eu(III)) transition chosen for circularly polarized luminescence (CPL) measurement. The proposed allowed magnetic-dipole (5)D1 <-- (7)F0 (Eu(III)) transition will facilitate the detection of CPL from the Eu(III) systems of interest. CPL on the acetonitrile solution of the chiral tris complex of Eu(III) with (R,R)-N,N'-bis(1-phenylethyl)-2,6-pyridinedicarboxamide ([Eu((R,R)-1)3](3+)), recently suggested as an effective and reliable CPL calibrating agent, confirms the feasibility of the proposed experimental procedure. A comparable CPL activity exhibited by the acetonitrile solution of [Eu((R,R)-1)3](3+) following direct excitation in the spectral range of the (5)D1 <-- (7)F0 transition and upon indirect excitation through the ligand absorption bands (lambda(exc) = 308 nm) was observed. This confirms that the recommended magnetic-dipole allowed absorption transition, (5)D1 <-- (7)F0, is the transition to be considered in the measurement of CPL. This work provides critical direction for the continued instrumental improvements that can be done for developing CPL into a biomolecular structural probe.  相似文献   

13.
Highly luminescent tris[β-diketonate (HFA, 1,1,1,5,5,5-hexafluoropentane-2,4-dione)] europium(III) complexes containing a chiral bis(oxazolinyl) pyridine (pybox) ligand--[(Eu(III)(R)-Ph-pybox)(HFA)(3)], [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)], and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)])--exhibit strong circularly polarized luminescence (CPL) at the magnetic-dipole ((5)D(0) → (7)F(1)) transition, where the [(Eu(III)(R)-Ph-pybox)(HFA)(3)] complexes show virtually opposite CPL spectra as compared to those with the same chirality of [(Eu(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Eu(III)(R)-Me-Ph-pybox)(HFA)(3)]. Similarly, the [(Tb(III)(R)-Ph-pybox)(HFA)(3)] complexes were found to exhibit CPL signals almost opposite to those of [(Tb(III)(R)-i-Pr-pybox)(HFA)(3)] and [(Tb(III)(R)-Me-Ph-pybox)(HFA)(3)] complexes with the same pybox chirality. Single-crystal X-ray structural analysis revealed ligand-ligand interactions between the pybox ligand and the HFA ligand in each lanthanide(III) complex: π-π stacking interactions in the Eu(III) and Tb(III) complexes with the Ph-pybox ligand, CH/F interactions in those with the i-Pr-pybox ligand, and CH/π interactions in those with the Me-Ph-pybox ligand. The ligand-ligand interactions between the achiral HFA ligands and the chiral pybox results in an asymmetric arrangement of three HFA ligands around the metal center. The metal center geometry varies depending on the types of ligand-ligand interaction.  相似文献   

14.
The self-assembly of dinuclear triple helical lanthanide ion complexes (helicates), in aqueous solution, is investigated utilizing laser-induced, lanthanide luminescence spectroscopy. A series of dinuclear lanthanide (III) helicates (Ln(III)) based on 2,6-pyridinedicarboxylic acid (dipicolinic acid, dpa) coordinating units was synthesized by linking two dpa moieties using the organic diamines (1R,2R)-diaminocyclohexane (chxn-R,R) and 4,4'-diaminodiphenylmethane (dpm). Luminescence excitation spectroscopy of the Eu3+ 7F0-->5D0 transition shows the apparent cooperative formation of neutral triple helical complexes in aqueous solution, with a [Eu2L3] stoichiometry. Eu3+ excitation peak wavelengths and excited-state lifetimes correspond to those of the [Eu(dpa)3]3- model complex. CD studies of the Nd(III) helicate Nd2(dpa-chxn-R,R)3 reveal optical activity of the f-f transitions, indicating that the chiral linking group induces a stable chirality at the metal ion center. Molecular mechanics calculations using CHARMm suggest that the delta delta configuration at the Nd3+ ion centers is induced by the chxn-R,R linker. Stability constants were determined for both ligands with Eu3+, yielding identical results: log K = 31.6 +/- 0.2 (K in units of M-4). Metal-metal distances calculated from Eu3+-->Nd3+ energy-transfer experiments show that the complexes have metal-metal distances close to those calculated by molecular modeling. The fine structure in the Tb3+ emission bands is consistent with the approximate D3 symmetry as anticipated for helicates.  相似文献   

15.
We successfully prepared PNIPAM-g-P(NIPAM-co-St) (PNNS) core–shell microsphere by an emulsifier-free emulsion polymerization method. When PNNS with a core–shell structure is interacted with Eu(III), Eu(III) mainly bonds to oxygen of the carbonyl groups of PNNS, forming the novel PNNS-Eu(III) complex. It was found that the complex showed thermosensitive and fluorescent properties at one time. Especially, the maximum emission intensity of Eu(III) in the complex at 614 nm is significantly enhanced in comparison with that of pure Eu(III), demonstrating that there exists an efficient intermolecular energy transfer from the polymer ligand to Eu(III) and then the excited Eu(III) generates the enhanced fluorescence. When the weight ratio of Eu(III) and the PNNS is 8 wt%, the enhancement of the emission fluorescence intensity at 614 nm is highest.  相似文献   

16.
Lanthanide complexes of Schiff bases (SBs) with 1:1 and 1:2 (M:Lig) stoichiometric ratios were prepared by condensation of pyridoxal (PL) and aspartic acid (Asp) or l-histidine (His), respectively, in the presence of the appropriate metal chloride as a templating agent. These complexes were studied by optical spectroscopy and single crystal X-ray diffraction techniques. Crystallographic studies of 1:1 ([Eu(PL-Asp)(H(2)O)(4)](H(2)O)) and 1:2 ([Eu(PL-His)(2)(H(2)O)(2)]Cl(H(2)O)(4)) complexes show that Eu(III) is eight-coordinate in both structures, in a distorted square antiprism environment formed by the phenolic oxygen of PL, the nitrogen atom of carbon-nitrogen double bond, oxygen atoms of the carboxylate groups of His or Asp, and oxygen atoms of the water molecules. The main species formed in aqueous solutions containing these SBs have been determined by analysis of the luminescence spectra, lifetimes of Eu(III) excited states and vibronic interaction as well as structural features of the Eu(III) coordination sphere. Possible tetradentate coordination function of SBs in aqueous solutions with relatively high concentrations as well as the potential application of the lanthanide SB complexes as new luminescence materials are discussed.  相似文献   

17.
Summary We have investigated the structure of Eu(III)-citrate complexes in aqueous solution and their degradability by Pseudomonas fluorescens. Analysis of 1:1, 1:2, and 1:5 Eu(III):citrate solutions at pH 7 by electrospray ionization mass spectrometry (ESI-MS) showed that the 2:2 Eu(III)-citrate complex is the predominant complex species at a low citrate/Eu(III) ratio, while at a high ratio, a 1:2 Eu(III)-citrate complex is formed preferably. Studies on the biodegradation of Eu(III)-citrate complex by P. fluorescens have shown that a 2:2 Eu(III)-citrate complex is resistent to degradation while a 1:2 complex transforms to a 2:2 complex with the degradation of excess citric acid.  相似文献   

18.
A series of new 1,4,7,10-tetraazacyclododecane-derivatives having a combination of amide and ketone donor groups as side-arms were prepared, and their complexes with europium(III) studied in detail by high resolution NMR spectroscopy. The chemical shift of the Eu(3+)-bound water resonance, the chemical exchange saturation transfer (CEST) characteristics of the complexes, and the bound water residence lifetimes (τ(m)) were found to vary dramatically with the chemical structure of the side-arms. Substitution of ketone oxygen donor atoms for amide oxygen donor atoms resulted in an increase in residence water lifetimes (τ(m)) and a decrease in chemical shift of the Eu(3+)-bound water molecule (Δω). These experimental results along with density functional theory (DFT) calculations demonstrate that introduction of weakly donating oxygen atoms in these complexes results in a much weaker ligand field, more positive charge on the Eu(3+) ion, and an increased water residence lifetime as expected for a dissociative mechanism. These results provide new insights into the design of paramagnetic CEST agents with even slower water exchange kinetics that will make them more efficient for in vivo imaging applications.  相似文献   

19.
Three new aryl amide type ligands, N-(phenyl)-2-(quinolin-8-yloxy)acetamide (L(1)), N-(benzyl)-2-(quinolin-8-yloxy)acetamide (L(2)) and N-(naphthalene-1-yl)-2-(quinolin-8-yloxy)acetamide (L(3)) were synthesized. With these ligands, three series of lanthanide(III) complexes were prepared: [Ln(L(1))(2)(NO(3))(2)]NO(3), [Ln(L(2))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O and [Ln(L(3))(2)(NO(3))(2)(H(2)O)(2)]NO(3).H(2)O (Ln=La, Sm, Eu, Gd). The complexes were characterized by the elemental analyses, molar conductivity, (1)H NMR spectra, IR spectra and TG-DTA. The fluorescence properties of complexes in the solid state and the triplet state energies of the ligands were studied in detail, respectively. It was found that the Eu(III) complexes have bright red fluorescence in solid state. The energies of excited triplet state for the three ligands are 20325 cm(-1) (L(3)), 21053 cm(-1) (L(2)) and 22831 cm(-1) (L(1)), respectively. All the three ligands sensitize Eu(III) strongly and the order of the emission intensity for the Eu(III) complexes with the three ligands is L(3)>L(2)>L(1). It can be explained by the relative energy gap between the lowest triplet energy level of the ligand (T) and (5)D(1) of Eu(III). This means that the triplet energy level of the ligand is the chief factor, which dominates Eu(III) complexes luminescence.  相似文献   

20.
Water‐soluble luminescent material was developed by introducing europium (Eu(III)) ions into the core of a star polymer. Living radical polymerization was used to obtain the star polymer. The strategy to introduce Eu(III) ions into the star polymer was studied using poly(methyl methacrylate) as an arm. The best Eu(III) ion introduction was obtained by simultaneous introduction, resulting in about 30 µmol/g‐polymer, which needed only one step for synthesis. The utilization of a hydrophilic polymer such as poly(ethylene oxide) (PEO) as an arm produced a water‐soluble star polymer. The Eu(III)‐bearing PEO star polymer obtained in this study was water soluble and showed fluorescence. In addition, it was stable in water after 1 month. The Eu(III)‐bearing star polymer exhibited luminescent properties under UV light irradiation with relatively high quantum yields of 60% in organic solution and 19% in aqueous solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2527–2535  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号