首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scale free graphs have attracted attention as their non-uniform structure that can be used as a model for many social networks including the WWW and the Internet. In this paper, we propose a simple random model for generating scale free k-trees. For any fixed integer k, a k-tree consists of a generalized tree parameterized by k, and is one of the basic notions in the area of graph minors. Our model is quite simple and natural; it first picks a maximal clique of size k + 1 uniformly at random, it then picks k vertices in the clique uniformly at random, and adds a new vertex incident to the k vertices. That is, the model only makes uniform random choices twice per vertex. Then (asymptotically) the distribution of vertex degree in the resultant k-tree follows a power law with exponent 2 + 1/k, the k-tree has a large clustering coefficient, and the diameter is small. Moreover, our experimental results indicate that the resultant k-trees have extremely small diameter, proportional to o(log n), where n is the number of vertices in the k-tree, and the o(1) term is a function of k.  相似文献   

2.
Jim Propp's rotor–router model is a deterministic analog of a random walk on a graph. Instead of distributing chips randomly, each vertex serves its neighbors in a fixed order. Cooper and Spencer (Comb Probab Comput 15 (2006) 815–822) show a remarkable similarity of both models. If an (almost) arbitrary population of chips is placed on the vertices of a grid ?d and does a simultaneous walk in the Propp model, then at all times and on each vertex, the number of chips on this vertex deviates from the expected number the random walk would have gotten there by at most a constant. This constant is independent of the starting configuration and the order in which each vertex serves its neighbors. This result raises the question if all graphs do have this property. With quite some effort, we are now able to answer this question negatively. For the graph being an infinite k‐ary tree (k ≥ 3), we show that for any deviation D there is an initial configuration of chips such that after running the Propp model for a certain time there is a vertex with at least D more chips than expected in the random walk model. However, to achieve a deviation of D it is necessary that at least exp(Ω(D2)) vertices contribute by being occupied by a number of chips not divisible by k at a certain time. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

3.
A k‐tree is a chordal graph with no (k + 2)‐clique. An ?‐tree‐partition of a graph G is a vertex partition of G into ‘bags,’ such that contracting each bag to a single vertex gives an ?‐tree (after deleting loops and replacing parallel edges by a single edge). We prove that for all k ≥ ? ≥ 0, every k‐tree has an ?‐tree‐partition in which each bag induces a connected ‐tree. An analogous result is proved for oriented k‐trees. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 167–172, 2006  相似文献   

4.
An Efficient Exact Algorithm for Constraint Bipartite Vertex Cover   总被引:2,自引:0,他引:2  
The constraint bipartite vertex cover problem (CBVC for short) is as follows: given a bipartite graph G with n vertices and two positive integers k1k2, is there a vertex cover taking at most k1 vertices from one and at most k2 vertices from the other vertex set of G? CBVC is NP-complete. It formalizes the spare allocation problem for reconfigurable arrays, an important problem from VLSI manufacturing. We provide a nontrivial so-called fixed parameter algorithm for CBVC, running in O(1.3999k1 + k2 + (k1 + k2)n) time. Our algorithm is efficient and practical for small values of k1 and k2, as occurring in applications. The analysis of the search tree is based on a novel bonus point system: after the processing of the search tree (which takes time exponential in k), a polynomial-time final analysis follows. Parts of the computation that would be normally done within the search-tree phase can be postponed; nevertheless, knowledge about the size of those parts can be used to reduce the length of the search paths (and hence the depth of the search tree as a whole) by a sort of bonus points.  相似文献   

5.
A tournament of order n is an orientation of a complete graph with n vertices, and is specified by its vertex set V(T) and edge set E(T). A rooted tree is a directed tree such that every vertex except the root has in-degree 1, while the root has in-degree 0. A rooted k-tree is a rooted tree such that every vertex except the root has out-degree at most k; the out-degree of the root can be larger than k. It is well-known that every tournament contains a rooted spanning tree of depth at most 2; and the root of such a tree is also called a king in the literature. This result was strengthened to the following one: Every tournament contains a rooted spanning 2-tree of depth at most 2. We prove that every tournament of order n≥800 contains a spanning rooted special 2-tree in this paper, where a rooted special 2-tree is a rooted 2-tree of depth 2 such that all except possibly one, non-root, non-leaf vertices, have out-degree 2 in the tree. Revised: November 9, 1998  相似文献   

6.
The Erd?s‐Sós Conjecture is that a finite graph G with average degree greater than k ? 2 contains every tree with k vertices. Theorem 1 is a special case: every k‐vertex tree of diameter four can be embedded in G. A more technical result, Theorem 2, is obtained by extending the main ideas in the proof of Theorem 1. © 2005 Wiley Periodicals, Inc. J Graph Theory 49: 291–301, 2005  相似文献   

7.
Let k be a non-negative integer. A branch vertex of a tree is a vertex of degree at least three. We show two sufficient conditions for a connected claw-free graph to have a spanning tree with a bounded number of branch vertices: (i) A connected claw-free graph has a spanning tree with at most k branch vertices if its independence number is at most 2k + 2. (ii) A connected claw-free graph of order n has a spanning tree with at most one branch vertex if the degree sum of any five independent vertices is at least n ? 2. These conditions are best possible. A related conjecture also is proposed.  相似文献   

8.
Most everyday reasoning and decision making is based on uncertain premises. The premises or attributes, which we must take into consideration, are random variables, therefore we often have to deal with a high dimensional multivariate random vector. A multivariate random vector can be represented graphically as a Markov network. Usually the structure of the Markov network is unknown. In this paper we construct special type of junction trees, in order to obtain good approximations of the real probability distribution. These junction trees are capable of revealing some of the conditional independences of the network. We have already introduced the concept of the t-cherry junction tree (E. Kovács and T. Szántai in Proceedings of the IFIP/IIASA//GAMM Workshop on Coping with Uncertainty, 2010), based on the t-cherry tree graph structure. This approximation uses only two and three dimensional marginal probability distributions. Now we use k-th order t-cherry trees, also called simplex multitrees to introduce the concept of the k-th order t-cherry junction tree. We prove that the k-th order t-cherry junction tree gives the best approximation among the family of k-width junction trees. Then we give a method which starting from a k-th order t-cherry junction tree constructs a (k+1)-th order t-cherry junction tree which gives at least as good approximation. In the last part we present some numerical results and some possible applications.  相似文献   

9.
A k‐dominating set of a graph G is a subset ?? of the vertices of G such that every vertex of G is either in ?? or at distance at most k from a vertex in ??. It is of interest to find k‐dominating sets of small cardinality. In this paper we consider simple randomized greedy algorithms for finding small k‐dominating sets of regular graphs. We analyze the average‐case performance of the most efficient of these simple heuristics showing that it performs surprisingly well on average. The analysis is performed on random regular graphs using differential equations. This, in turn, proves upper bounds on the size of a minimum k‐dominating set of random regular graphs. © 2005 Wiley Periodicals, Inc. Random Struct. Alg., 22, 2005  相似文献   

10.
For a positive integer k, a set of k + 1 vertices in a graph is a k-cluster if the difference between degrees of any two of its vertices is at most k − 1. Given any tree T with at least k3 edges, we show that for each graph G of sufficiently large order, either G or its complement contains a copy of T such that some vertices in the copy form a k-cluster in G. The same conclusion holds for any tree T having a vertex of degree more than k. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
A uniform attachment graph (with parameter k), denoted Gn,k in the paper, is a random graph on the vertex set [n], where each vertex v makes k selections from [v ? 1] uniformly and independently, and these selections determine the edge set. We study several aspects of this graph. Our motivation comes from two similarly constructed, well‐studied random graphs: k‐out graphs and preferential attachment graphs. In this paper, we find the asymptotic distribution of its minimum degree and connectivity, and study the expansion properties of Gn,k to show that the conductance of Gn,k is of order . We also study the bootstrap percolation on Gn,k, where r infected neighbors infect a vertex, and show that if the probability of initial infection of a vertex is negligible compared to then with high probability (whp) the disease will not spread to the whole vertex set, and if this probability exceeds by a sub‐logarithmical factor then the disease whp will spread to the whole vertex set.  相似文献   

12.
We study Maker‐Breaker games played on the edge set of a random graph. Specifically, we analyze the moment a typical random graph process first becomes a Maker's win in a game in which Maker's goal is to build a graph which admits some monotone increasing property \begin{align*}\mathcal{P}\end{align*}. We focus on three natural target properties for Maker's graph, namely being k ‐vertex‐connected, admitting a perfect matching, and being Hamiltonian. We prove the following optimal hitting time results: with high probability Maker wins the k ‐vertex connectivity game exactly at the time the random graph process first reaches minimum degree 2k; with high probability Maker wins the perfect matching game exactly at the time the random graph process first reaches minimum degree 2; with high probability Maker wins the Hamiltonicity game exactly at the time the random graph process first reaches minimum degree 4. The latter two statements settle conjectures of Stojakovi? and Szabó. We also prove generalizations of the latter two results; these generalizations partially strengthen some known results in the theory of random graphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 2011  相似文献   

13.
Grow a tree on n vertices by starting with no edges and successively adding an edge chosen uniformly from the set of possible edges whose addition would not create a cycle. This process is closely related to the classical random graph process. We describe the asymptotic structure of the tree, as seen locally from a given vertex. In particular, we give an explicit expression for the asymptotic degree distribution. Our results an be applied to study the random minimum-weight spanning tree question, when the edge-weight distribution is allowed to vary almost arbitrarily with n.  相似文献   

14.
Given a connected graph, in many cases it is possible to construct a structure tree that provides information about the ends of the graph or its connectivity. For example Stallings' theorem on the structure of groups with more than one end can be proved by analyzing the action of the group on a structure tree and Tutte used a structure tree to investigate finite 2‐connected graphs, that are not 3‐connected. Most of these structure tree theories have been based on edge cuts, which are components of the graph obtained by removing finitely many edges. A new axiomatic theory is described here using vertex cuts, components of the graph obtained by removing finitely many vertices. This generalizes Tutte's decomposition of 2‐connected graphs to k‐connected graphs for any k, in finite and infinite graphs. The theory can be applied to nonlocally finite graphs with more than one vertex end, i.e. ends that can be separated by removing a finite number of vertices. This gives a decomposition for a group acting on such a graph, generalizing Stallings' theorem. Further applications include the classification of distance transitive graphs and k‐CS‐transitive graphs.  相似文献   

15.
A graph is t‐tough if the number of components of G\S is at most |S|/t for every cutset SV (G). A k‐walk in a graph is a spanning closed walk using each vertex at most k times. When k = 1, a 1‐walk is a Hamilton cycle, and a longstanding conjecture by Chvátal is that every sufficiently tough graph has a 1‐walk. When k ≥ 3, Jackson and Wormald used a result of Win to show that every sufficiently tough graph has a k‐walk. We fill in the gap between k = 1 and k ≥ 3 by showing that, when k = 2, every sufficiently tough (specifically, 4‐tough) graph has a 2‐walk. To do this we first provide a new proof for and generalize a result by Win on the existence of a k‐tree, a spanning tree with every vertex of degree at most k. We also provide new examples of tough graphs with no k‐walk for k ≥ 2. © 2000 John Wiley & Sons, Inc. J Graph Theory 33:125–137, 2000  相似文献   

16.
We consider a tree that grows randomly in time. Each time a new vertex appears, it chooses exactly one of the existing vertices and attaches to it. The probability that the new vertex chooses vertex x is proportional to w(deg(x)), a weight function of the actual degree of x. The weight function w : ℕ → ℝ+ is the parameter of the model. In 4 and 11 the authors derive the asymptotic degree distribution for a model that is equivalent to the special case, when the weight function is linear. The proof therein strongly relies on the linear choice of w. Using well‐established results from the theory of general branching processes we give the asymptotical degree distribution for a wide range of weight functions. Moreover, we provide the asymptotic distribution of the tree itself as seen from a randomly selected vertex. The latter approach gives greater insight to the limiting structure of the tree. Our proof is robust and we believe that the method may be used to answer several other questions related to the model. It relies on the fact that considering the evolution of the random tree in continuous time, the process may be viewed as a general branching process, this way classical results can be applied. © 2006 Wiley Periodicals, Inc. Random Struct. Alg., 2007  相似文献   

17.
An in‐tournament is an oriented graph such that the negative neighborhood of every vertex induces a tournament. The topic of this paper is to investigate vertex k‐pancyclicity of in‐tournaments of order n, where for some 3 ≤ kn, every vertex belongs to a cycle of length p for every kpn. We give sharp lower bounds for the minimum degree such that a strong in‐tournament is vertex k‐pancyclic for k ≤ 5 and kn − 3. In the latter case, we even show that the in‐tournaments in consideration are fully (n − 3)‐extendable which means that every vertex belongs to a cycle of length n − 3 and that the vertex set of every cycle of length at least n − 3 is contained in a cycle of length one greater. In accordance with these results, we state the conjecture that every strong in‐tournament of order n with minimum degree greater than is vertex k‐pancyclic for 5 < k < n − 3, and we present a family of examples showing that this bound would be best possible. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 84–104, 2001  相似文献   

18.
For each k ≥ 3, we construct a finite directed strongly k-connected graph D containing a vertex t with the following property: For any k spanning t-branchings, B1, …, Bk in D (i. e., each Bi is a spanning tree in D directed toward t), there exists a vertex xt of D such that the k, x, t-paths in B1, …, Bk are not pairwise openly disjoint. This disproves a well-known conjecture of Frank. © 1995, John Wiley & Sons, Inc.  相似文献   

19.
A vertex set Y in a (hyper)graph is called k-independent if in the sub(hyper)-graph induced by Y every vertex is incident to less than k edges. We prove a lower bound for the maximum cardinality of a k-independent set—in terms of degree sequences—which strengthens and generalizes several previously known results, including Turán's theorem.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号