首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用电场控制气泡形态及运动,强化气液相间传热传质是电流体动力学的重要研究内容之一. 然而目前多数研究集中在非电场下的气泡动力学上,对于电场下的气泡行为特性及电场的作用机制仍需开展深入研究. 本研究对电场作用下单个气泡在流体中上升过程的动力学行为进行了数值模拟研究. 在建立二维模型的基础上求解电场方程与Navier-Stokes方程,并采用水平集方法捕捉了上升气泡的位置及形状. 模拟结果的准确性与有效性通过与前人实验和数值结果进行对比得到了验证. 通过改变雷诺数、邦德数和电邦德数等不同参数研究了电场下液体黏度、表面张力和电场力对气泡运动变形的影响. 计算结果表明,电场对气泡的动态特性有显著影响. 非电场情况下液体黏度和表面张力较大时气泡基本维持球状,反之气泡发生变形并逐步达到稳定状态. 此外,电场作用使气泡在初始上升阶段发生剧烈形变,随着不断上升,气泡形变程度不断减小,且气泡的上升速度和长径比均出现振荡. 垂直电场使气泡的上升速度有较大的提高,且随着电邦德数的增大,难以达到相对稳定的状态.   相似文献   

2.
The effect of distributed bubble nuclei sizes on shock propagation in a bubbly liquid is numerically investigated. An ensemble-averaged technique is employed to derive the statistically averaged conservation laws for polydisperse bubbly flows. A finite-volume method is developed to solve the continuum bubbly flow equations coupled to a single-bubble-dynamic equation that incorporates the effects of heat transfer, liquid viscosity and compressibility. The one-dimensional shock computations reveal that the distribution of equilibrium bubble sizes leads to an apparent damping of the averaged shock dynamics due to phase cancellations in oscillations of the different-sized bubbles. If the distribution is sufficiently broad, the phase cancellation effect can dominate over the single-bubble-dynamic dissipation and the averaged shock profile is smoothed out.  相似文献   

3.
The differential pressure between the entrance and throat of a Venturi will fluctuate if the liquid flowing through the Venturi contains bubbles. This paper reports computations of the pressure fluctuation due to the passage of a single bubble. The liquid is assumed inviscid and its velocity, assumed irrotational, is computed by means of a boundary integral technique. The liquid velocity at the entrance to the Venturi is assumed constant and uniform across the pipe, as is the pressure at the outlet. The bubble is initially far upstream of the Venturi and moves with velocity equal to that of the liquid. Buoyancy is neglected. If the bubble is sufficiently small that interactions with the Venturi walls may be neglected, a simple one-dimensional model for the bubble velocity is in good agreement with the full boundary integral computations. The differential pressure (taken to be positive) decreases when the bubble enters the converging section of the Venturi, and then increases to a value higher than for liquid alone as the bubble passes the pressure measurement position within the throat. The changes can be estimated using the one-dimensional model, if the bubble is small. The bubble is initially spherical (due to surface tension) but is perturbed by the low pressure within the Venturi throat. In the absence of viscosity, the bubble oscillates after leaving the Venturi. The quadrupole oscillations of the bubble are similar in frequency to those of a bubble in unbounded fluid; the frequency of the monopole oscillations is modified by the presence of the pipe walls. Numerical results for the frequency of monopole oscillations of a bubble in a uniform tube of finite length are in good agreement with analytic predictions, as is the computed drift of the oscillating bubble.  相似文献   

4.
The dynamics of a “collective” gas bubble in the magma melt during its decompression was numerically studied on the basis of a complete mathematical models of an explosive volcanic eruption. It is shown that the bubble size distribution obtained for the nucleation process has one peak, which allows considering a “collective” bubble. The main stages of bubble growth due to gas diffusion and changes in the viscosity of the medium are determined. It is shown that the high viscosity of the melt makes possible the transition from the Rayleigh equation to a simpler relation for the radial velocity of the bubble.  相似文献   

5.
Specific features of the dynamics of the wave field structure and growth of a “collective” bubble behind the decompression wave front in the “Lagrangian” section of the formed cavitation zone are numerically analyzed. Two cases are considered: with no diffusion of the dissolved gas from the melt to cavitation nuclei and with the diffusion flux providing an increase in the gas mass in the bubbles. In the first case, it is shown that an almost smooth decompression wave front approximately 100 m wide is formed, with minor perturbations that appear when the front of saturation of the cavitation zone with nuclei is passed. In the case of the diffusion process, the melt state behind the saturation front is principally different: jumps in mass velocity and viscosity are observed in the vicinity of the free surface, and the pressure in the “collective” cavitation bubble remains unchanged for a sufficiently long time interval, despite the bubble growth and intense diffusion of the gas from the melt. It is assumed that the diffusion process (and, therefore, viscosity) actually become factors determining the dynamics of growth of cavitation bubbles beginning from this time interval. A pressure jump is demonstrated to form near the free surface.  相似文献   

6.
The dynamics of disturbances of the interface between two layers of incompressible immiscible fluids of different densities in the presence of a steady flow between the horizontal bottom and lid is studied analytically and numerically. A model integrodifferential equation is derived, which takes into account long-wave contributions of inertial layers and surface tension of the fluids, small but finite amplitude of disturbances, and unsteady shear stresses on all boundaries. Numerical solutions of this equation are given for the most typical nonlinear problems of transformation of both plane waves of different lengths and solitary waves. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 4, pp. 49–61, July–August, 2007.  相似文献   

7.
The dynamics of a spherical cavity in a non-Newtonian fluid, described by the Reiner-Rivlin rheological equation [1], is investigated. The equation of radial cavity motion is obtained, where the gas in the cavity is subject to a polytropic law and surface tension is taken into account. The equation of cavity motion is solved numerically for a number of values of the transverse viscosity coefficient. The influence of the transverse viscosity on the collapse process of vapor and gas-filled cavities is shown. Numerical computations are also carried out for the rate of energy dissipation and the pressure distribution in the fluid.Translated from Izvestiya Akademiya Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 170–173, July–August, 1973.The authors are grateful to A. T. Listrove for attention to the research.  相似文献   

8.
High-speed motion pictures of air–water interface dynamics of drop impacts that reproducibly make bubbles are presented. The pictures show previously unobserved details of the phenomenon. Measurements are compared with available computational methods. Experimental and numerical results agree with each other on the overall shape of the interface and the occurrence of bubble detachment. Measurements, however, show that the cavity depth stagnates before bubble entrapment. This behavior is not predicted by simulation. Also discussed are the presence of a jet that strikes the new bubble after formation and the possible effect of droplet surface oscillations on bubble entrainment. Received: 25 April 2000 / Accepted: 26 April 2001  相似文献   

9.
Time periodic generation and coalescence of bubbles by injection of a gas at a constant flow rate through an orifice at the bottom of a quiescent inviscid liquid is investigated numerically using a potential flow formulation. The volume of the bubbles is determined for different values of a Weber number and a Bond number. Single bubbling and different regimes of coalescence are described by these computations. The numerical results show qualitative agreement with well-known experimental results for liquids of low viscosity, suggesting that bubble interaction and coalescence following gas injection is to a large extent an inviscid phenomenon for these liquids, many aspects of which can be accounted for without recourse to wake effects or other viscosity-dependent ingredients of some current models.  相似文献   

10.
In order to investigate the effects of a nonuniform electric field on the behavior of a bubble, a numerical study on the shape of a bubble attached to a conducting tip on a supporting wall is performed. The equilibrium bubble shape is determined by solving the free boundary problem that consists of the governing equation for electric field and the normal stress condition at the bubble surface. A numerically generated composite orthogonal coordinate system is employed to solve the free boundary problem. A bubble on a tip is found to be extended in the direction parallel to the applied electric field. The elongation increases steeply with an increase of the electric field strength and the height of the tip. It is also observed that a highly elongated bubble has a shape with slender waist. The bubble shape obtained from numerical studies are qualitatively similar to the shapes observed in experiments. If the contact radius is maintained during bubble deformation, the contact angle and the aspect ratio increase with the increase of the electric field strength and the tip height. On the other hand, if the contact angle is fixed during bubble deformation, the contact radius decreases as the electric field strength increases. In order to estimate the effect of electric field on the bubble departure volume, the surface tension force and the downward electric force exerted on a bubble are also computed for a bubble of fixed volume under the fixed contact angle condition. The sum of the two forces is found to decrease with increasing strength of nonuniform electric field. This fact suggests that the bubble departure volume decreases in a nonuniform electric field.  相似文献   

11.
The evolution of the radius of a spherical cavitation bubble in an incompressible non-Newtonian liquid under the action of an external acoustic field is investigated. Non-Newtonian liquids having relaxation properties and also pseudoplastic and dilatant liquids with powerlaw equation of state are studied. The equations for the oscillation of the gas bubble are derived, the stability of its radial oscillation and its spherical form are investigated, and formulas are given for the characteristic frequency of oscillations of the cavitation hollow in a relaxing liquid. The equations are integrated numerically. It is shown that in a relaxing non-Newtonian liquid the viscosity may lead to the instability of the radial oscillations and the spherical form of the bubble. The results obtained here are compared with the behavior of a gas bubble in a Newtonian liquid.  相似文献   

12.
Small amplitude surface tension driven oscillations of a spherical bubble in a dilute polymer solution are considered. The rheological properties of the liquid are modelled by using a 3-constant constitutive equation of the Oldroyd type. The Laplace transform of the solution of the initial value problem is inverted numerically. As in the Newtonian fluid case, both a discrete and a continuous spectrum occurs. In addition to the non-dimensional parameters in the corresponding problem for a Newtonian fluid, the results depend on two other parameters: the ratio of the relaxation time of the polymer solution and the time scale of the flow (the Deborah number) and the product of the polymer concentration and the intrinsic viscosity. For small bubbles in an aqueous solution having a small relaxation time, significant additional damping is found even for dilute solutions.  相似文献   

13.
The evolution of small perturbations of the spherical shape of a vapor bubble in the process of its single strong expansion and compression in deuterated acetone is studied. In the mathematical model used the motion of vapor and liquid is broken down into the spherical component and its small nonspherical perturbation. The spherical component is described by the fluid dynamics equations with account for time-dependent heat conduction and evaporation and condensation on the liquid-vapor interface using equations of state constructed from experimental data. In describing the nonspherical component the liquid viscosity and the surface tension are taken into account, while the effect of the bubble content is disregarded. Certain simple analytical formulas are presented which describe the bubble radius at the moment of maximum expansion, its variation in the compression stage, and the evolution of the bubble sphericity distortion in compression.  相似文献   

14.
A method for the application of interface force in the computational modeling of free surfaces and interfaces which uses PLIC-VOF methods is developed. This method is based on evaluation of the surface tension force only in the interfacial cells with out using the neighboring cells. The normal and the interface surface area needed for the calculation of the surface tension force are calculated more accurately. This method is applied on a staggered grid and it is referred to as Staggered Grid Interfere Pressure calculation method or SGIP. The present method is applied to a two-dimensional motionless liquid drop and a gas bubble. In addition, oscillations of a non-circular two-dimensional drop and a bubble due only to the surface tension forces are considered. It is shown that the new method predicts the pressure jump at the interface more accurately and produces less spurious currents compared to CSF, CSS and Meier's methods when applied to the same cases.  相似文献   

15.
Dynamics of three-dimensional disturbances of the interface between two fluid layers of different densities is considered analytically and numerically. An evolutionary integrodifferential equation is derived, which takes into account long-wave contributions of inertia of the layers and surface tension, small but finite amplitude of disturbances of the interface between two incompressible immiscible fluids, gentle slopes of the lid and bottom, and nonstationary shear stresses at all boundaries. Numerical solutions of this model equation for several (most typical) nonlinear problems of transformation of two- and three-dimensional waves are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 45–57, November–December, 2005.  相似文献   

16.
对电场作用下微通道荷电液滴脱落过程中液桥形成及断裂的显微演变特征进行了可视化实验研究.借助时空分辨率较高的高速摄像技术精确捕捉了电场作用下液桥形成及断裂的界面演化过程,研究了液桥的界面结构变化及其断裂的动力学显微演变行为,获得了时间特征数、电邦德数及半月面形成角对液桥长度及断裂顺序的作用规律.实验结果显示,液桥断裂长度取决于黏度与表面张力之比,而受荷电弛豫时间的影响甚微,低电压工况下各实验介质液桥相对长度的变化并不明显,而在较高电压工况下相对液桥长度的增长速度加快.随着电邦德数的不断增加,液桥长度的变化在较高邦德数下更为明显且存在突变区,此时伴随着雾化模式的转变,表明液桥的突变恰恰是雾化模式过渡的信号.不同物性介质的射流过渡行为由于液桥上下游形成角的变化而存在较大差异.对于无水乙醇介质,电邦德数的增加使滴状模式首先过渡到纺锤模式,而对于生物柴油,滴状模式后会首先出现脉动模式而非纺锤模式.   相似文献   

17.
The structure and dynamics of the wave field generated by a bubble system in the form of an axial bubble cylinder (cord) excited by a plane shock wave propagating along the axis in an axisymmetric shock tube are numerically examined. It is shown that consecutive excitation of oscillations of the bubble zone results in formation of a quasi-steady shock wave in the cord and in the ambient liquid. Results of the numerical analysis of the maximum amplitude of the resulting wave as a function of problems parameters are described.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 46–52, September–October, 2005.  相似文献   

18.
Coupled shape oscillations and translational motion of an incompressible gas bubble in a vibrating liquid container is studied numerically. The bubble oscillation characteristics are mapped based on the bubble Bond number (Bo) and the ratio of the vibration amplitude of the container to the bubble diameter (A/D). At small Bo and A/D, the bubble oscillation is found to be linear with small amplitudes, and at large Bo and A/D, it is nonlinear and chaotic. This chaotic bubble oscillation is similar to those observed in two coupled nonlinear systems, here being the gas inside the bubble and its surrounding liquid. Further increases in the forcing, results in the bubble breakup due to large liquid inertia.  相似文献   

19.
The possibility of controlling the oscillations of a spherical gas bubble in an ideal incompressible liquid is subjected to theoretical analysis. Liquid surface tension forces are not taken into account. The optimization process realizing a maximum of the radius amplitude and a maximum of the gas pressure in the bubble for a given impulsive change of pressure at infinity is considered. A shock-resonance bubble oscillation procedure giving stepwise pressure changes at the extrema of the radius is constructed. This problem is of interest in connection with the investigation of cavitation erosion [1] and processes in biological tissues [2–4]. Moscow. Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 175–178, September–October, 1988.  相似文献   

20.
In this work, the combined effect of electrohydrodynamic forces and domain confinement on the formation of a toroidal bubble is numerically studied. The numerical scheme is the Volume of Fluid (VOF) method and the surface tension and electric forces are implemented using the Continuum Surface Force (CSF) and leaky dielectric models, respectively. It is found that both domain confinement and electric forces are influential on the formation of a toroidal bubble. For smaller confinement ratios, larger electric forces are required to pierce the bubble. Moreover, the influence of both electric forces and confinement ratio are presented and discussed for bubble vertical velocity, terminal Reynolds number, velocity streamlines and side-wall shear stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号