首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 101 毫秒
1.
2.
研究了GaInAs/AlInAsn型调制掺杂结构样品的光致发光及其激发光谱。当空穴态被局域化后.二维电子气的发光线形反映了导带二维态密度的填充效应:导带两个子带填充电子。发光强度则表明,导带第二子带电子波函数在空间上更扩展,与空间分离的空穴产生发光复合的几率较大。激发光谱提供了样品中异质结结构直接带边附近光吸收过程的信息。  相似文献   

3.
为了研究ZnO掺Sb后电子结构和光学性质的变化,采用基于密度泛函理论对纯净ZnO和Sb掺杂ZnO两种结构进行第一性原理的计算。计算结果表明:随着Sb的掺入,体系的晶格常数变大,键长增加,体积变大,系统总能增大。能带中价带和导带数目明显变密,费米能级进入导带,体系逐渐呈金属性,带隙明显展宽。在光学性质方面,主吸收峰的左边出现了新的吸收峰,是由导带上的Zn-4s和Sb-5p轨道杂化电子跃迁所致;同时介电函数虚部波峰发生一定程度的升高,实部静态介电常数也明显增大。  相似文献   

4.
采用基于密度泛函理论的赝势平面波方法,对掺入Mn,Cr,Co,Ni的β-FeSi2的几何结构、能带结构和光学性质进行了研究.计算结果表明:(1)杂质的掺入改变了晶胞体积及原子位置,掺杂足调制材料电子结构的有效方式;(2)系统总能量的计算表明Mn掺杂时倾向于置换Fel位的Fe原子,而Cr,Co,Ni倾向于取代Fell位的Fe原子;能带结构的计算表明掺Mn,Cr使得β-FeSi2的费米面向价带移动,形成了P型半导体;而掺Co,Ni则使得β-FeSi2的费米面向导带移动,形成了n型半导体;(3)杂质原子的掺入在费米面附近提供了大量的载流子,改变了电子在带间的跃迁,对β-FeSi2的光学性质造成影响.  相似文献   

5.
采用有机前驱体制备纳米材料工艺,制备出不同Al掺杂浓度的6H-SiC纳米线(Al/6H-SiC).用HRTEM、EDX、XRD等对纳米线进行了表征,发现随着起始材料中异丙醇铝含量的增加,所制备的纳米线中的Al浓度也在增加,最高可达到1.25%, HRTEM显示晶格间距为0.26 nm和0.25 nm,对应为6H-SiC的(101)和(102)面间距,Si、C原子比为1∶1.拉曼光谱得到这种6H-SiC的声子能量为100 meV,由吸收光谱带边吸收外推计算得到Al/6H-SiC纳米线光学带隙,掺杂浓度越大,吸收边红移越大.  相似文献   

6.
闫万珺  谢泉 《半导体学报》2008,29(6):1141-1146
采用基于密度泛函理论的赝势平面波方法,对掺入Mn,Cr,Co,Ni的β-FeSi2的几何结构、能带结构和光学性质进行了研究.计算结果表明:(1)杂质的掺入改变了晶胞体积及原子位置,掺杂足调制材料电子结构的有效方式;(2)系统总能量的计算表明Mn掺杂时倾向于置换Fel位的Fe原子,而Cr,Co,Ni倾向于取代Fell位的Fe原子;能带结构的计算表明掺Mn,Cr使得β-FeSi2的费米面向价带移动,形成了P型半导体;而掺Co,Ni则使得β-FeSi2的费米面向导带移动,形成了n型半导体;(3)杂质原子的掺入在费米面附近提供了大量的载流子,改变了电子在带间的跃迁,对β-FeSi2的光学性质造成影响.  相似文献   

7.
该文在TiO2压敏陶瓷中掺杂CeO2,研究了烧结温度和CeO2掺杂量对TiO2基压敏陶瓷的电学性能的影响。结果表明,烧结温度为1 400℃、CeO2掺杂摩尔分数为1.0%时,TiO2基压敏陶瓷表现出较好的综合电学性能:压敏电压为7.7V/mm,非线性系数为3.8,漏电流为0.1A,且具有优的介电常数和介电损耗。  相似文献   

8.
廖杨芳  谢泉  肖清泉  项飞羽  杨真 《半导体光电》2018,39(3):376-380,402
采用基于密度泛函理论的第一性原理赝势平面波方法研究了本征Mg2Si及钴(Co)掺杂Mg2Si体系的晶体结构、自旋态密度、磁性和光学性质.结果表明,Co替Mg(CoMg)缺陷的形成能为负,可以形成稳定的缺陷.从自旋态密度可以看出,本征Mg2Si为无磁性半导体;向Mg2Si体系掺入Co后,体系的磁矩由于Co-3d态和Si-3p态杂化(pd杂化)诱导产生,且体系呈明显的半金属特性.超胞中Co的磁矩为0.53 μB.从吸收光谱可以看出,Co掺杂Mg2Si的主吸收峰强度略小于本征Mg2Si,但吸收跨度则明显大于本征Mg2Si.本征Mg2Si对于能量小于1.55 eV(对应波长为800 nm)的光子几乎不吸收,而掺杂体系还存在着较大的吸收,说明Co元素的掺杂显著地改善了Mg2Si对低能(红外)光子的吸收.计算结果为Mg2Si基自旋电子器件和光电子器件的设计和应用提供了理论依据.  相似文献   

9.
王岩  杨平 《电子科技》2019,32(2):20-24
运用Materials Studio软件中的CASTEP子模块,借助第一性原理平面波超软赝势法,计算分析了稀土元素(Sm,Tm)掺杂ZnO前后的能带结构、态密度以及光学性质变化情况。计算结果表明,掺杂后体系的能带部分更加稠密,出现新的杂质能级,费米能级从价带顶处上移进入导带部分,出现载流子简并现象,形成简并半导体。掺杂体系显示出更强的金属性,呈现n型导电。同时定性分析了体系前后的光学吸收系数与介电函数的变化情况。  相似文献   

10.
闫金良  曲崇 《半导体学报》2016,37(4):042002-7
研究F掺杂浓度对β-Ga2O3的几何结构、电子结构和光学性质的影响。F掺杂β-Ga2O3在富Ga条件下容易制备,随F掺杂浓度的提高,F掺杂β-Ga2O3的稳定性增强,结构参数变大。F掺杂β-Ga2O3是一种n型半导体材料,导带中的占据态由Ga 4s、Ga 4p和O 2p态组成,占据态随F掺杂浓度的增加而增加。随F掺杂浓度的提高,F掺杂β-Ga2O3的禁带宽度收缩,占据态展宽。F掺杂β-Ga2O3的吸收谱呈现陡峭的带边吸收和宽的吸收带。随F掺杂浓度的提高,F掺杂β-Ga2O3的带边吸收蓝移,宽带吸收的强度增强。宽带吸收是由导带中的占据态向空态带内跃迁产生的。  相似文献   

11.
By the total energy pseudo-potential approach of plane wave, we study the electronic and optical properties of the anatase TiO2 systems with Sc-doped, oxygen vacancies included, and Sc and oxygen vacancies co-existing, respectively. The obtained results show that the contribution by the doped Sc lies mainly in the valence band, and the light absorption in the visible region is obvious. A Mott phase transformation takes place in the presence of oxygen vacancies, and the light absorption in the visible region is also obvious. In particular, the absorption in the visible region of the co-doped system is enhanced coherently due to the influences both from doped Sc and oxygen vacancies.  相似文献   

12.
采用总能量平面波赝势方法研究了Sc掺杂、含氧空位、氧空位与Sc掺杂共存时的锐钛矿TiO2系统的电子结构和光学性质。结果表明,Sc掺杂对系统的主要贡献在价带区,在可见光区有明显的光吸收;氧空位可以使系统发生莫特相变,系统在可见光区也有较强的吸收;氧空位与Sc掺杂共存时系统在可见光区的吸收相干加强。  相似文献   

13.
二氧化铈(CeO2)具有独特的萤石型晶体结构、优秀的储放氧能力、良好的化学稳定性以及高温下氧空位的快速扩散能力,在有毒有害气体检测方面被广泛关注和研究。然而,纯CeO2气敏传感器工作温度偏高且响应恢复时间长,无法满足越发严苛的实际环境监测需求。综述了近年来国内外关于纳米CeO2气敏材料相关研究进展,根据不同的机理从结构调控、掺杂复合两个方面重点对CeO2的改性进行分析,简述了其在柔性传感领域的应用,为高性能气敏传感器的深入研究提供参考。  相似文献   

14.
SnO2掺Ag纳米线的制备、结构表征及光学性质研究   总被引:1,自引:1,他引:0  
用化学气相沉积法在管式炉中制备了SnO2掺Ag纳米线.纳米线直径约50 nm,长几十微米.通过XRD、TEM和Raman谱仪等测量确定SnO2掺Ag纳米线为金红石型结构,XPS谱表明样品中含有Sn、O和Ag元素,Ag的浓度约为1.8 at.%,室温PL谱显示样品在626nm处有很强的红光发射峰.  相似文献   

15.
By analyzing the infrared reflection spectra of ion implanted GaAs, the optical dispersion parameters have been determined as function of depth from the implanted surface. Measured spectra were fitted to the calculated reflectance from two homogeneous implant layers on the unaffected bulk; the dispersion parameters in both layers were adjusted with different sets of layer thicknesses sampling the implanted region. Fluences ranging from 3x1013 to 2x1017 N+ ions/cm2 were implanted at 1, 2, and 3 MeV. The resulting profiles of the frequency, strength and damping of the transverse optical lattice oscillator and of the high-frequency dielectric constant show maximum change at depth do determined by the ion energy. These maximum changes are comparable to the literature values for amorphous GaAs. Annealing from 300 to 600°C leads to gradual recovery, except near do. Sectioning experiments showed amorphous electron diffraction patterns in buried layers of about 1 μm thickness, encompassing do.  相似文献   

16.
通过高温固相法制备了白光LED用Sb3+掺杂的Y1.94-yGdSbyAl5O12:0.06Ce荧光粉,使用荧光分光光度计研究了样品的发光性能,并采用紫外-可见-近红外光谱分析系统分析了所制荧光粉的封装性能。结果表明,Y1.94-yGdSbyAl5O12:0.06Ce荧光粉为立方晶系,其发射中心波长为550 nm,Sb3+掺杂有助于提高YAG:Ce的发光强度。将合成的Y1.92GdSb0.02Al5O12:0.06Ce(CL-Y-550)荧光粉封装成白光LED,其平均色温为5 376 K,属于冷白;平均显色指数为81.2,达到了基本的应用水平。  相似文献   

17.
采用溶胶-凝胶技术在Pt/Ti/SiO_2/Si衬底上制备了不同镧掺杂浓度BiGaO_3(Lx BGO,0≤x≤0.1)薄膜.X-射线衍射(XRD)表明该属于正交晶系的多晶薄膜,原子力显微镜(AFM)图像显示样品表面具有很好的平整性.采用椭圆偏振技术对其光学性质进行了详细的研究,发现其光学常数符合Adachi色散模型.进一步发现其禁带宽度随着镧掺杂浓度的增加而增加,该规律与理论预言相吻合.有关LxBGO材料的研究为铋基光电器件如紫外探测器的实现提供物理基础支持.  相似文献   

18.
采用低温催化制备了纳米CeO2,该工艺避开了高温煅烧,降低了生产成本,简化了生产工艺,是一项反应物浓度高、条件温和、经济效益好的清洁型工艺。XRD分析表明产物为萤石结构的立方相CeO2;TEM表明产物为球形,粒经分布范围窄;粒度分布仪测定产物粒径为20nm。  相似文献   

19.
利用溶胶-凝胶法(sol-gel)在玻璃和硅衬底上生长了B掺杂量分别为0 at%、0.5at%、1.0 at%、2.0 at%、3.0 at%、4.0 at%的ZnO薄膜.采用X射线衍射仪(X-ray diffraction,XRD)、扫描电子显微镜(scanning electron microscope,SEM)、紫外-可见(ultraviolet-visible,UV-Vis)分光光度计等测试手段对薄膜的结构、形貌和光学性能进行了表征.结果 表明:所制备的样品在2θ=34.4°左右出现了ZnO晶体的(002)衍射峰,说明制得的样品具有六方纤锌矿结构.并且(002)衍射峰的半高宽先变小后变大,这说明衍射峰的强度是先加强后减弱,证明其晶粒尺寸是先增大后减小.当B掺杂量为3.0 at%时,样品沿(002)方向择优取向生长最为明显,薄膜上的晶粒生长均匀、致密.B掺氧化锌(BZO)薄膜在可见光区的透过率随B3+的掺杂量的增加先增加后减小,并出现轻微蓝移的现象.当掺入B3+的量为3.0 at%时,薄膜结晶质量最好,表面最为均匀、致密,透过率达到90%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号