首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
(1) Background: Mass spectrometry-based quantitative proteome profiling is most commonly performed by label-free quantification (LFQ), stable isotopic labeling with amino acids in cell culture (SILAC), and reporter ion-based isobaric labeling methods (TMT and iTRAQ). Isobaric peptide termini labeling (IPTL) was described as an alternative to these methods and is based on crosswise labeling of both peptide termini and MS2 quantification. High quantification accuracy was assumed for IPTL because multiple quantification points are obtained per identified MS2 spectrum. A direct comparison of IPTL with other quantification methods has not been performed yet because IPTL commonly requires digestion with endoproteinase Lys-C. (2) Methods: To enable tryptic digestion of IPTL samples, a novel labeling for IPTL was developed that combines metabolic labeling (Arg-0/Lys-0 and Arg-d4/Lys-d4, respectively) with crosswise N-terminal dimethylation (d4 and d0, respectively). (3) Results: The comparison of IPTL with LFQ revealed significantly more protein identifications for LFQ above homology ion scores but not above identity ion scores. (4) Conclusions: The quantification accuracy was superior for LFQ despite the many quantification points obtained with IPTL.  相似文献   

2.
Herein we describe a sensitive and straightforward off-line capillary electrophoresis (CE) matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) interface in conjunction with stable isotopic labeling (SIL) technique for comparative neuropeptidomic analysis in crustacean model organisms. Two SIL schemes, including a binary H/D formaldehyde labeling technique and novel, laboratory-developed multiplexed dimethylated leucine-based isobaric tagging reagents, have been evaluated in these proof-of-concept experiments. We employ these isotopic labeling techniques in conjunction with CE-MALDI-MS for quantitative peptidomic analyses of the pericardial organs isolated from two crustacean species, the European green crab Carcinus maenas and the blue crab Callinectes sapidus. Isotopically labeled peptide pairs are found to co-migrate in CE fractions and quantitative changes in relative abundances of peptide pairs are obtained by comparing peak intensities of respective peptide pairs. Several neuropeptide families exhibit changes in response to salinity stress, suggesting potential physiological functions of these signaling peptides.  相似文献   

3.
Highly site-selective dimethyl labeling of N-terminus of peptides has been obtained by adjusting the acidic strength of the reaction solution. And this selective labeling strategy combined with the use of different isotope formaldehyde reagents has been successfully used in the proteome quantification by using the isobaric peptide cross-sequence labeling method, which would play increasingly important roles in the clinical diagnosis, especially in the discovery of biomarkers for diseases.  相似文献   

4.
Stable heavy-isotope labeling is commonly used in quantitative proteomics. Several common techniques incorporate deuterium (2H) as the heavy isotopic label using reductive amination with formaldehyde. Compared with alternatives, dimethyl labeling reagents are inexpensive and the labeling chemistry is simple and rapid. However, the substitution of hydrogen by deuterium can introduce subtle changes in peptides’ polarities, leading to a shift in chromatographic retention times between deuterated and nondeuterated peptides that can lead to quantification deviations. Capillary zone electrophoresis has emerged as a complementary separation for ESI–MS-based proteomics, including targeted and quantitative approaches. The extent to which the deuterium isotope effect impacts CZE-based proteomics, which separates peptides based on their S/N ratios, has not been investigated. To address this issue, CZE was used to analyze dimethyl labeled E. coli tryptic digests in 100 min single-shot analyses. The median migration time shift was 0.1 s for light versus heavy labeled peptides, which is 2.5% of the peak width. For comparison, nUHPLC–ESI–MS/MS was used to analyze the same sample. In UPLC, deuterated peptides tended to elute earlier than nondeuterated peptides, with a retention shift of 3 s for light versus heavy labeled peptides, which is roughly half the peak width. This shift in separation time did not have a significant effect on quantitation for either method for equal mixing ratios of the light-intermediate-heavy isotope labeled samples.  相似文献   

5.
A method was developed that uses urea to both solublize and isotopically label biological samples for comparative proteomics. This approach uses either light or heavy urea ((12)CH(4)(14)N(2)O or (13)CH(4)(15)N(2)O, respectively) at a concentration of 8 M and a pH of 7 to dissolve the samples prior to digestion. After the sample is digested using standard proteomic protocols and dried, isotopic labeling is completed by resuspending the sample in a solution of 8 M urea at a pH of 8.5, using the same isotopic species of urea as used for digestion and incubating for 4 h at 80 degrees C. Under these conditions, carbamylation occurs only on the primary amines of the peptides. The effects of complete carbamylation on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and electrospray ionization tandem mass spectrometry (ESI-MS/MS) (collision-induced dissociation (CID)) were examined. Peptides that had a C-terminal carbamylated lysine residue were found to have a reduced intensity when viewed by MALDI-TOFMS. CID of a tryptic peptide that was carbamylated on both the N-terminus and the C-terminus was found to have a more uniform distribution of b- and y-ions, as well as prominent ions from loss of water. Reversed-phase chromatography coupled to ESI-MS/MS was used to identify and quantify the isotopically labeled standard proteins, bovine serum albumin (BSA), bovine transferrin, and bovine alpha-casein. Quantitative error between theoretical and observed data ranged from 1.7-10.0%. Relative standard deviations for protein quantitation ranged from 5.2-27.8% over a dynamic range from 0.1-10 (L/H). The development of a method utilizing urea-assisted carbamylation of lysines and N-termini to globally labeled samples for comparative proteomics may prove useful for samples that require a strong chaotrope prior to proteolysis.  相似文献   

6.
A pair of isotope-coded, fluorous photoaffinity labeling reagents has been developed and coupled with a peptide. The modified peptides form adducts with methanol upon light illumination, which show characteristic isotope labeling patterns in mass spectra and can be separated from other peptides through fluorous silica.  相似文献   

7.
采用胰蛋白酶(Trypsin)单独酶切与不同酶量的赖氨酸C端内切酶(Lys-C/trypsin)顺序酶切两种方法,对293T细胞全蛋白样本进行酶解消化,系统评估Lys-C/trypsin顺序酶切与Trypsin单一酶切在蛋白质组学样本制备中的差别.实验结果表明,Lys-C/trypsin顺序酶切不仅能显著提高肽段和蛋白质的鉴定数目,同时降低遗漏K酶切位点的数目及比例,而且得到的肽段长度有利于质谱鉴定,蛋白质覆盖率明显提升.通过对酶的用量进行优化对比,最终确定了Lys-C/trypsin顺序酶切时酶的合理用量.本研究结果对提高蛋白质组学样本的制备质量以及蛋白质的序列鉴定覆盖度具有指导意义.  相似文献   

8.
We present a new isotopic labeling strategy to modify the N-terminal amino group of peptides in a quantifiable reaction without the use of expensive reagents or solvents. The In Vacuo Isotope Coded Alkylation Technique (IVICAT) is a methylation reaction, carried out at low pressure (<100 mTorr), that results in a stable quaternary trimethylammonium group, thus adding a permanent positive charge at the N-terminus of peptides without modifying the epsilon-amino groups of lysine. The methylation reaction increases the signal intensity of modified peptides in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and liquid chromatography (LC)/MS and the isotopic peak pair differs by 9 mass units which can be easily resolved by either instrument. N-terminally trimethylated peptides exhibit collision-induced dissociation (CID) mass spectra that differ from their unmodified analogues by an enhanced b-ion series in MS2 spectra due to the fixed positive charge. Using LC/MS/MS with an LTQ mass analyzer for quantification, the experimentally determined ratios of H9- to D9-trimethyl-labeled peptides of beta-casein provided accurate estimates of the actual ratios with low % error. IVICAT labeling also accurately quantified proteins in rat kidney inner medullary collecting duct cell types, as judged by comparison with relative quantification by subsequent immunoblotting experiments. IVICAT labeling, when used in conjunction with the new proteomics software QUIL, can accurately report relative protein abundances and increase the sequence coverage of proteins of tissue proteomes.  相似文献   

9.
Metabolomic profiling involves relative quantification of metabolites in comparative samples and identification of the significant metabolites that differentiate different groups (e.g., diseased vs. controls). Chemical isotope labeling (CIL) liquid chromatography–mass spectrometry (LC–MS) is an enabling technique that can provide improved metabolome coverage and metabolite quantification. However, chemical identification of labeled metabolites can still be a challenge. In this work, a new set of isotopic labeling reagents offering versatile properties to enhance both detection and identification are described. They were prepared by a glycine molecule (or its isotopic counterpart) and an aromatic acid with varying structures through a simple three-step synthesis route. In addition to relatively low costs of synthesizing the reagents, this reaction route allows adjusting reagent property in accordance with the desired application objective. To date, two isotopic reagents, 4-dimethylaminobenzoylamido acetic acid N-hydroxylsuccinimide ester (DBAA-NHS) and 4-methoxybenzoylamido acetic acid N-hydroxylsuccinimide ester (MBAA-NHS), for labeling the amine-containing metabolites (i.e., amine submetabolome) have been synthesized. The labeling conditions and the related LC–MS method have been optimized. We demonstrate that DBAA labeling can increase the metabolite detectability because of the presence of an electrospray ionization (ESI)-active dimethylaminobenzoyl group. On the other hand, MBAA labeled metabolites can be fragmented in MS/MS and pseudo MS3 experiments to provide structural information on metabolites of interest. Thus, these reagents can be tailored to quantitative profiling of the amine submetabolome as well as metabolite identification in metabolomics applications.  相似文献   

10.
A method for the complete peptide mapping of the model integral membrane protein bacteri-orhodopsin is demonstrated. Utilizing more effective enzymatic digestion, procedures with capillary liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) and tandem mass spectrometry (MS/MS), all predicted tryptic digestion products were detected, as well as peptides from all previously reported post-translational modifications of bacteriorhodopsin. A significant contribution of chymotryptic-like digestion products was also observed. A characterization of the behavior of hydrophobic integral membrane peptides in a reversed-phase liquid chromatographic separation is also provided. The method reported here offers improved compatibility of the solubilizing reagents with both the chromatography and mass spectrometry, rendering it suitable for high-throughput proteomic applications.  相似文献   

11.
As an extension of our previous work, here a strategy was demonstrated for protein identification and quantification analyses utilizing a combination of stable isotope chemical labeling with subsequent denaturation, enzymatic digestion and matrix assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Using [d0]‐ and [d6]‐4,6‐dimethoxy‐2‐(methylsulfonyl)pyrimidine ([d0]‐/[d6]‐DMMSP), stable isotopic labels were incorporated before digestion. The comparative samples were combined before labeling after digestion, thus biases resulting from differences in sample digestion were avoided and the higher accuracy of quantification could be attained. The labeling was spatial‐selective to particular residues of cysteine, lysine, and tyrosine before denaturation, which could lead to a better universality of the strategy for cysteine‐free proteins. In addition, some lysine residues were blocked after labeling, the partly destroyed recognition sites could simplify the trypsin hydrolysates and hence facilitate the MS complexity. Together, our one‐step labeling strategy combined several desirable properties such as spatial‐selective labeling, reliability of quantitative results, simplification of analysis of complex systems and direct analysis with minimum sample handling. Our results demonstrate the usefulness of the method for analyzing lysozyme in egg white. The method was expected to provide a new powerful tool for comparative proteome research.  相似文献   

12.
A new O(18) labeling protocol is designed to assist quantitation of cysteine-containing proteins using LC/MS. Unlike other O(18) labeling strategies, the labeling is carried out at the intact protein level (prior to its digestion) during reduction/alkylation of cysteine side chains using O(18)-labeled iodoacetic acid (IAA). The latter can be easily prepared by exchanging carboxylic oxygen atoms of commercially available IAA in O(18)-enriched water at low pH. Since incorporation of the O(18) label in the protein occurs at the whole protein, rather than peptide level, the quantitation results are not peptide-dependent. The excellent stability of the label in mild pH conditions provides flexibility and robustness needed of sample processing steps following the labeling. In contrast to generally costly isotope labeling reagents, this approach uses only two relatively inexpensive commercially available reagents (IAA and H(2)O(18)). The feasibility of the new method is demonstrated using an 80?kDa human serum transferrin (hTf) as a model, where linear quantitation is achieved across a dynamic range spanning three orders of magnitude. The new approach can be used in quantitative proteomics applications and is particularly suitable for a variety of tasks in the biopharmaceutical sector, ranging from pharmacokinetic studies to quality control of protein therapeutics.  相似文献   

13.
Quantitative peptidomics and proteomics often use chemical tags to covalently modify peptides with reagents that differ in the number of stable isotopes, allowing for quantitation of the relative peptide levels in the original sample based on the peak height of each isotopic form. Different chemical reagents have been used as tags for quantitative peptidomics and proteomics, and all have strengths and weaknesses. One of the simplest approaches uses formaldehyde and sodium cyanoborohydride to methylate amines, converting primary and secondary amines into tertiary amines. Up to five different isotopic forms can be generated, depending on the isotopic forms of formaldehyde and cyanoborohydride reagents, allowing for five-plex quantitation. However, the mass difference between each of these forms is only 1 Da per methyl group incorporated into the peptide, and for many peptides there is substantial overlap from the natural abundance of 13C and other isotopes. In this study, we calculated the contribution from the natural isotopes for 26 native peptides and derived equations to correct the peak intensities. These equations were applied to data from a study using human embryonic kidney HEK293T cells in which five replicates were treated with 100 nM vinblastine for 3 h and compared with five replicates of cells treated with control medium. The correction equations brought the replicates to the expected 1:1 ratios and revealed significant decreases in levels of 21 peptides upon vinblastine treatment. These equations enable accurate quantitation of small changes in peptide levels using the reductive methylation labeling approach.
Graphical abstract ?
  相似文献   

14.
We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.
Figure
115F  相似文献   

15.
A peptide targeting method has been developed for diagnostic protein discovery, which combines proteolytic digestion of fractionated plasma proteins and liquid chromatography coupled to electrospray time-of-flight mass spectrometry (LC/ESI-TOFMS) profiling. Proteolysis prior to profiling overcomes molecular weight limitations and compensates for the poor sensitivity of matrix-assisted laser desorption/ionization (MALDI) protein profiling. LC/MS increases the peak capacity compared to crude fractionation techniques or single sample MALDI analysis. Differentially expressed peptides are targeted in the mass chromatograms using bioinformatic techniques and subsequently sequenced with MALDI tandem MS. In a model study comparing pancreatic cancer patients to controls, 74% of the peptide targets were successfully sequenced. This profiling method was superior to previous experiments using single sample MALDI analysis for protein profiling or proteolytic peptide profiling, because more potential protein markers were identified.  相似文献   

16.
Steroid hormones play important roles in mammal at very low concentrations and are associated with numerous endocrinology and oncology diseases. Therefore, quantitative analysis of steroid hormones can provide crucial information for uncovering underlying mechanisms of steroid hormones related diseases. In the current study, we developed a sensitive method for the detection of steroid hormones (progesterone, dehydroepiandrosterone, testosterone, pregnenolone, 17-hydroxyprogesterone, androstenedione and 17α-hydroxypregnenolone) in body fluids by stable isotope labeling coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis. In this respect, a pair of isotopes labeling reagents, Girard reagent P (GP) and d5-Girard reagent P (d5-GP), were synthesized and utilized to label steroid hormones in follicular fluid samples and steroid hormone standards, respectively. The heavy labeled standards were used as internal standards for quantification to minimize quantitation deviation in MS analysis due to the matrix and ion suppression effects. The ionization efficiencies of steroid hormones were greatly improved by 4–504 folds through the introduction of a permanent charged moiety of quaternary ammonium from GP. Using the developed method, we successfully quantified steroid hormones in human follicular fluid. We found that the contents of testosterone and androstenedione exhibited significant increase while the content of pregnenolone had significant decrease in follicular fluid of polycystic ovarian syndrome (PCOS) patients compared with healthy controls, indicating that these steroid hormones with significant change may contribute to the pathogenesis of PCOS. Taken together, the developed stable isotope labeling coupled LC-ESI-MS/MS analysis demonstrated to be a promising method for the sensitive and accurate determination of steroid hormones, which may facilitate the in-depth investigation of steroid hormones related diseases.  相似文献   

17.
A strategy based on a simultaneous multi-enzyme digestion coupled with electron transfer dissociation (ETD) and collision-induced dissociation (CID) was developed for protein sequencing and characterization, as a valid alternative platform in ion-trap based proteomics. The effect of different proteolytic procedures using chymotrypsin, trypsin, a combination of both, and Lys-C, was carefully evaluated in terms of number of identified peptides, protein coverage, and score distribution. A systematic comparison between CID and ETD is shown for the analysis of peptides originating from the in-solution digestion of standard caseins. The best results were achieved with a trypsin/chymotrypsin mix combined with CID and ETD operating in alternating mode. A post-database search validation of MS/MS dataset was performed, then, the matched peptides were cross checked by the evaluation of ion scores, rank, number of experimental product ions, and their relative abundances in the MS/MS spectrum. By integrated CID/ETD experiments, high quality-spectra have been obtained, thus allowing a confirmation of spectral information and an increase of accuracy in peptide sequence assignments. Overlapping peptides, produced throughout the proteins, reduce the ambiguity in mapping modifications between natural variants and animal species, and allow the characterization of post translational modifications. The advantages of using the enzymatic mix trypsin/chymotrypsin were confirmed by the nanoLC and CID/ETD tandem mass spectrometry of goat milk proteins, previously separated by two-dimensional gel electrophoresis.  相似文献   

18.
周玮  刘晓慧  周新文  申华莉  杨芃原 《色谱》2007,25(5):623-627
基于高分辨率、高精度、高灵敏度及良好表现力的多级质谱,以标准糖蛋白辣根过  相似文献   

19.
The synthesis and application of two new alkylating reagents, N-tert-butyl-2-iodoacetamide (N-t-butyliodoacetamide) and 2-iodo-N-phenylacetamide (iodoacetanilide), are described. N-t-Butyliodoacetamide and iodoacetanilide were synthesised to purity in their d(0)-light and in their respective d(9)- and d(5)-heavy forms. The newly synthesised reagents are covalently bound to peptides containing cysteines via an alkylation reaction. The mass differences of 5 and 9 Da avoid possible problems of overlapping isotope distribution. For each alkylated cysteine a peptide mass increases, respectively, by a multiple of 113 and 133 Da for the d(0)-light form of N-t-butyliodoacetamide and iodoacetanilide. These reagents can therefore replace common alkylating reagents in existing proteomics-based applications. Alkylated peptides increase in mass in the same mass range as amino acids and remain suitable for tandem mass spectrometry (MS/MS) data acquisition and analysis. The compounds are simple to use and derivatisation is based on widely applied alkylating procedures. Preliminary results show that these reagents can be applied for both protein quantitation and identification by peptide mass finger printing and/or MS/MS techniques. Using these chemicals and the suggested workflow enables the quantitative analysis of the whole protein sample and realises access to peptides that may contain potential post-translational modifications. Other approaches that incorporate a matrix-assisted laser desorption/ionisation (MALDI) interface prior to MS can take advantage of these chemicals, such as the molecular scanner.  相似文献   

20.
The inverse labeling/mass spectrometry strategy has been applied to protein metabolic (15)N labeling for gel-free proteomics to achieve the rapid identification of protein markers/targets. Inverse labeling involves culturing both the perturbed (by disease or by a drug treatment) and control samples each in two separate pools of normal and (15)N-enriched culture media such that four pools are produced as opposed to two in a conventional labeling approach. The inverse labeling is then achieved by combining the normal (14)N-control with the (15)N-perturbed sample, and the (15)N-control with the (14)N-perturbed sample. Both mixtures are then proteolyzed and analyzed by mass spectrometry (coupled with on-line or off-line separation). Inverse labeling overcomes difficulties associated with protein metabolic labeling with regard to isotopic peak correlation and data interpretation in the single-experiment approach (due to the non-predictable/variable mass difference). When two data sets from inverse labeling are compared, proteins of differential expression are readily recognized by a characteristic inverse labeling pattern or apparent qualitative mass shifts between the two inverse labeling analyses. MS/MS fragmentation data provide further confirmation and are subsequently used to search protein databases for protein identification. The methodology has been applied successfully to two model systems in this study. Utilizing the inverse labeling strategy, one can use any mass spectrometer of standard unit resolution, and acquire only the minimum, essential data to achieve the rapid and unambiguous identification of differentially expressed protein markers/targets. The strategy permits quick focus on the signals of differentially expressed proteins. It eliminates the detection ambiguities caused by the dynamic range of detection. Finally, inverse labeling enables the detection of covalent changes of proteins responding to a perturbation that one might fail to distinguish with a conventional labeling experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号