首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we report on efforts to construct a high sensitive electrochemical sensor with immobilized sandwich‐type DNA borne ferrocene (Fc) head for sequence‐specific DNA detection using ultramicroelectrode and low current voltammetry. Based on the difference in deformability between the bending rigid complementary DNA double helix and its anomalous flexile mismatches, the fully complementary target can be distinguished from mismatched targets including the single‐base mismatched target. Detection limit estimated as the amount of DNA is observed to be 100 fM via low current voltammetry. The method offers great promise of high sensitivity and selectivity simultaneously for effective gene identification.  相似文献   

2.
We report the new method for detection of DNA hybridization using enzymatic cleavage. The strategy is based on that S1 nuclease is able to specifically cleave only single strand DNA, but not double strand DNA. The capture probe DNA, thiolated single strand DNA labeled with electroactive ferrocene group, was immobilized on a gold electrode. After hybridization of target DNA of complementary and noncomplementary sequences, nonhybridized single strand DNA was cleaved using S1 nuclease. The difference of enzymatic cleavage on the modified gold electrode was characterized by cyclic voltammetry and differential pulse voltammetry. We successfully applied this method to the sequence‐selective discrimination between perfectly matched and mismatched target DNA including a single‐base mismatched target DNA. Our method does not require either hybridization indicators or other exogenous signaling molecules which most of the electrochemical hybridization detection systems require.  相似文献   

3.
将核酸外切酶Ⅲ诱导的双重信号放大技术与MoS2纳米片的荧光猝灭性质结合,构建了一种高灵敏高选择性的DNA检测方法.首先设计两条末端修饰荧光基团的探针核酸(HP1和HP2).由于两条探针核酸具有3'粘性末端,使其不会被核酸外切酶Ⅲ降解,因而被吸附于MoS2纳米片而猝灭其荧光.当目标DNA存在时,会促使核酸外切酶Ⅲ启动双重信号放大反应,并将探针核酸降解成大量的不能吸附于MoS2纳米片表面的荧光碎片.在优化条件下,目标DNA浓度在0.5~6.0 pmol/L范围内与荧光信号变化呈良好的线性关系,检出限为0.28 pmol/L.与单重信号放大技术相比,本方法极大改善了分析灵敏度和检出限,且具有良好的单碱基错配区分能力.  相似文献   

4.
There are many methods available for the detection of nucleotide variations in genetic material. Most of these methods are applied after amplification of the target genome sequence by the polymerase chain reaction (PCR). Many efforts are currently underway to develop techniques that can detect single nucleotide variations in genes either by means of, or without the need for, PCR. Allele-specific PCR (asPCR), which reports nucleotide variations based on either the presence or absence of a PCR-amplified DNA product, has the potential to combine target amplification and analysis in one single step. The principle of asPCR is based on the formation of matched or mismatched primer-target complexes by using allele-specific primer probes. PCR amplification by a DNA polymerase from matched 3'-primer termini proceeds, whereas a mismatch should obviate amplification. Given the recent advancements in real-time PCR, this technique should, in principle, allow single nucleotide variations to be detected online. However, this method is hampered by low selectivity, which necessitates tedious and costly manipulations. Recently, we reported that the selectivity of asPCR can be significantly increased through the employment of chemically modified primer probes. Here we report further significant advances in this area. We describe the synthesis of various primer probes that bear polar 4'-C-modified nucleotide residues at their 3' termini, and their evaluation in real-time asPCR. We found that primer probes bearing a 4'-C-methoxymethylene modification have superior properties in the discrimination of single nucleotide variations by PCR.  相似文献   

5.
A mass sensitive quartz crystal microbalance (QCM) based genosensor has been developed using breast cancer 1 (BRCA1) gene as a model gene. We modified the traditional sandwich assay by conjugating reporter probe DNA (DNA-r) with an assembly of gold nanoparticles leading to an increased mass on the surface, which enhanced the sensitivity to few orders of magnitude. The unique cleavage function of endonuclease is used for achieving the selectivity to complementary DNA over mismatched DNA. With this combination, the sensor exhibited excellent sensitivity with a detection limit of 10 aM BRCA1 gene and it showed good selectivity for even single base mismatch DNA targets. This ultrasensitive and cost-effective DNA detection protocol can be extended to the direct analysis of any non-amplified genomic DNA.  相似文献   

6.
We have fabricated a highly sensitive, simple and label‐free single polypyrrole (Ppy) nanowire based conductometric/chemiresistive DNA sensor. The fabrication was optimized in terms of probe DNA sequence immobilization using a linker molecule and using gold‐thiol interaction. Two resultant sensor designs working on two different sensing mechanisms (gating effect and work function based sensors) were tested to establish reliable sensor architecture with higher sensitivity and device‐to‐device reproducibility. The utility of the work function based configuration was demonstrated by detecting 19 base pair (bp) long breast cancer gene sequence with single nucleotide polymorphism (SNP) discrimination with high sensitivity, lower detection limit of ∼10−16 M and wide dynamic range (∼10−16 to 10−11 M) in a small sample volume (30 µL). To further demonstrate the utility of the DNA sensor for detection of target sequences with different number of bases, targets with 21 and 36 bases were detected. These sequences have implications in environmental sample analysis or metagenomics. Sensor response showed increase with the number of bases in the target sequence. For long sequence (with 36 bases), effect of DNA alignment on sensor performance was studied.  相似文献   

7.
An electrochemical DNA biosensor for specific-sequences detection of Vibrio parahaemolyticus (VP) was fabricated. A single-stranded 20-mer oligonucleotide (ssDNA) and 6-mercapto-1-hexanol (MCH) were immobilized via a thiol linker on gold disk electrodes by self-assembling. The ssDNA underwent hybridization in a hybridization solution containing complementary or non-complementary or single base pair mismatched DNA sequences of VP. Examination of changes in response to these three target DNAs showed that the developed biosensor had a high selectivity and sensitivity.  相似文献   

8.
Gao H  Qi X  Chen Y  Sun W 《Analytica chimica acta》2011,704(1-2):133-138
An electrochemical DNA biosensor was fabricated by self-assembling probe single-stranded DNA (ssDNA) with a nanogold decorated on ionic liquid modified carbon paste electrode (IL-CPE). IL-CPE was fabricated using 1-butylpyridinium hexafluorophosphate as the binder and the gold nanoparticles were electrodeposited on the surface of IL-CPE (Au/IL-CPE). Then mercaptoacetic acid was self-assembled on the Au/IL-CPE to obtain a layer of modified film, and the ssDNA probe was further covalently-linked with mercaptoacetic acid by the formation of carboxylate ester with the help of N-(3-dimethylamino-propyl)-N'-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide. The hybridization reaction with the target ssDNA was monitored with methylene blue (MB) as the electrochemical indicator. Under the optimal conditions, differential pulse voltammetric responses of MB was proportional to the specific ssDNA arachis sequences in the concentration range from 1.0×10(-11) to 1.0×10(-6) mol L(-1) with the detection limit as 1.5×10(-12) mol L(-1) (3σ). This electrochemical DNA sensor exhibited good stability and selectivity with the discrimination ability of the one-base and three-base mismatched ssDNA sequences. The polymerase chain reaction product of arachis Arabinose operon D gene was successfully detected by the proposed method, which indicated that the electrochemical DNA sensor designed in this paper could be further used for the detection of specific ssDNA sequence.  相似文献   

9.
A novel signal enhanced liquid crystal biosensor based on using AuNPs for highly sensitive DNA detection has been developed. This biosensor not only significantly decreases the detection limit, but also offers a simple detection process and shows a good selectivity to distinguish perfectly matched target DNA from two-base mismatched DNA.  相似文献   

10.
A complex OsO4, 2,2′-bipyridine (Os,bipy), has been used for electroactive labeling of biopolymers as well as for probing of nucleic acids and protein structure and interactions. In DNA, Os,bipy forms electrochemically active adducts with pyrimidine nucleobases, exhibiting highly selective modification of thymine residues in single-stranded DNA. Here, we show that modification of rare thymine residues (one thymine among several tens of unreactive purine bases) can easily be detected by means of a simple ex situ voltammetric analysis using carbon electrodes. Based on this remarkable sensitivity of detection, Os,bipy has been used as an electroactive probe for unpaired and/or mismatched thymine residues within DNA heteroduplexes. Site-specific chemical modification of the DNA with the Os,bipy has allowed a clear distinction between perfectly base-paired DNA homoduplexes and mismatched heteroduplexes, as well as discrimination among heteroduplexes containing one or two mispaired thymines, a single thymine insertion, or combination of a mispair and an insertion.  相似文献   

11.
An electrically neutral cobalt complex, [Co(GA)2(phen)] (GA=glycollic acid, phen=1,10‐phenathroline), was synthesized and its interactions with double‐stranded DNA (dsDNA) were studied by using electrochemical methods on a glassy carbon electrode (GCE). We found that [Co(GA)2(phen)] could intercalate into the DNA duplex through the planar phen ligand with a high binding constant of 6.2(±0.2)×105 M ?1. Surface studies showed that the cobalt complex could electrochemically accumulate within the modified dsDNA layer, rather than within the single‐stranded DNA (ssDNA) layer. Based on this feature, the complex was applied as a redox‐active hybridization indicator to detect 18‐base oligonucleotides from the CaMV35S promoter gene. This biosensor presented a very low background signal during hybridization detection and could realize the detection over a wide kinetic range from 1.0×10?14 M to 1.0×10?8 M , with a low detection limit of 2.0 fM towards the target sequences. The hybridization selectivity experiments further revealed that the complementary sequence, the one‐base‐mismatched sequence, and the non‐complementary sequence could be well‐distinguished by the cobalt‐complex‐based biosensor.  相似文献   

12.
Xiaoyu Cao 《Mikrochimica acta》2014,181(9-10):1133-1141
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe ssDNA on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. A thiol-tagged DNA strand coupled to horseradish peroxidase conjugated to AuNP served as a tracer. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. Hybridization with the target DNA was studied by measuring the electrochemical signal response of horseradish peroxidase using differential pulse voltammetry. The calibration plot is linear in the 5.0?×?10?14 and 5.0?×?10?9 M concentration range, and the limit of detection is 2.2?×?10?15 M. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA. The approach is deemed to provide a sensitive and reliable tool for highly specific detection of DNA.
Figure
We have developed an ultra-sensitive electrochemical DNA biosensor by assembling probe (ssDNA) on a glassy carbon electrode modified with a composite made from molybdenum disulfide, graphene, chitosan and gold nanoparticles. The nanocomposite on the surface acts as relatively good electrical conductor for accelerating the electron transfer, while the enzyme tagged gold nanoparticles provide signal amplification. The biosensor displays high selectivity and can differentiate between single-base mismatched and three-base mismatched sequences of DNA  相似文献   

13.
We present a new strategy for the label‐free electrochemical detection of DNA hybridization based on gold nanoparticles (AuNPs)/poly(neutral red) (PNR) modified electrode. Probe oligonucledotides with thiol groups at the 5‐end were covalently linked onto the surface of AuNPs/PNR modified electrode via S‐Au binding. The hybridization event was monitored by using differential pulse voltammetry (DPV) upon hybridization generates electrochemical changes at the PNR‐solution interface. A significant decrease in the peak current was observed upon hybridization of probe with complementary target ssDNA, whereas no obvious change was observed with noncomplementary target ssDNA. And the DNA sensor also showed a high selectivity for detecting one‐mismatched and three‐mismatched target ssDNA and a high sensitivity for detecting complementary target ssDNA, the detection limit is 4.2×10?12 M for complementary target ssDNA. In addition, the DNA biosensor showed an excellent reproducibility and stability under the DNA‐hybridization conditions.  相似文献   

14.
In order to recognize the presence of the R553X point mutation of the cystic fibrosis (CF) gene in the human genome, a peptide nucleic acid (PNA) complementary to the mutated gene tract and bearing three adjacent chiral monomers based on D-lysine (chiral box) was synthesized and used as a probe in CE. Binding specificity was preliminarily studied with complementary and mismatched oligonucleotides by UV spectroscopy, electrospray MS, and electrophoresis, indicating a very high sequence selectivity. The chiral PNA probe was then hybridized to cyanine-5-labeled DNA samples (186 bp), obtained by PCR amplification, respectively, from: (a) normal homozygous subjects (wtDNA), (b) CF-affected homozygous subjects (mutDNA), (c) heterozygous subjects (healthy carriers) and denatured at low ionic strength. The PNA-DNA mixture was directly analyzed by CE with LIF detection: a new signal corresponding to the PNA-mutDNA duplex was observed, in the case of CF-affected homozygous subjects, whereas for the sample containing the mismatched sequence (normal homozygous wtDNA) only the signal corresponding to ssDNA (ss, single strand) was detected. In the case of heterozygous DNA, both PNA-mutDNA duplex and ssDNA were detected. With this simple assay, it was possible to discriminate in an easy way among the three cases (mutated homozygous, normal homozygous, and heterozygous subjects) with a total specificity, thus allowing a decisive advance for the diagnosis of CF.  相似文献   

15.
将空心球状CdS超声分散于聚乙烯醇(PVA)溶液中, 得到均匀的CdS-PVA复合材料分散液. 取适量分散液滴涂于玻碳电极表面, 晾干得到CdS-PVA修饰电极. 以对苯二甲酸为手臂连接剂, 在CdS-PVA膜上共价固定大肠杆菌特定寡聚核苷酸序列, 构建了一种新型的DNA传感器. 采用电化学阻抗法考察了该传感器的分析性能, 结果表明该传感器能有效区分互补序列、 单碱基错配序列、 三碱基错配序列和完全错配序列, 可在1.0×10-12~1.0×10-7 mol/L范围内对大肠杆菌目标序列进行定量分析, 检出限为1.3×10-13 mol/L. 将该传感器应用于大肠杆菌实际样品的检测, 结果令人满意.  相似文献   

16.
In this work, a sensitive electrochemical DNA biosensor for the detection of sequence‐specific target DNA was reported. Firstly, CuO nanospindles (CuO NS) were immobilized on the surface of a glassy carbon electrode (GCE). Subsequently, gold nanoparticles (Au NPs) were introduced to the surface of CuO NS by the electrochemical deposition mode. Probe DNA with SH (HS‐DNA) at the 5′‐phosphate end was covalently immobilized on the surface of the Au NPs through Au? S bond. Scanning electron microscopy (SEM) was used to elucidate the morphology of the assembled film, and electrochemical impedance spectroscopy technique (EIS) was used to investigate the DNA sensor assembly process. Hybridization detection of DNA was performed with differential pulse voltammetry (DPV) and the methylene blue (MB) was hybridization indicator. Under the optimal conditions, the decline of reduction peak current of MB (ΔI) was linear with the logarithm of the concentration of complementary DNA from 1.0×10?13 to 1.0×10?6 mol·L?1 with a detection limit of 3.5×10?14 mol·L?1 (S/N=3). In addition, this DNA biosensor has good selectivity, and even can distinguish single‐mismatched target DNA.  相似文献   

17.
We demonstrate a novel strategy for visualizing sequence-selective alkylation of target double-stranded DNA (dsDNA) using a synthetic pyrrole-imidazole (PI) polyamide in a designed DNA origami scaffold. Doubly functionalized PI polyamide was designed by introduction of an alkylating agent 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) and biotin for sequence-selective alkylation at the target sequence and subsequent streptavidin labeling, respectively. Selective alkylation of the target site in the substrate DNA was observed by analysis using sequencing gel electrophoresis. For the single-molecule observation of the alkylation by functionalized PI polyamide using atomic force microscopy (AFM), the target position in the dsDNA (~200 base pairs) was alkylated and then visualized by labeling with streptavidin. Newly designed DNA origami scaffold named "five-well DNA frame" carrying five different dsDNA sequences in its cavities was used for the detailed analysis of the sequence-selectivity and alkylation. The 64-mer dsDNAs were introduced to five individual wells, in which target sequence AGTXCCA/TGGYACT (XY = AT, TA, GC, CG) was employed as fully matched (X = G) and one-base mismatched (X = A, T, C) sequences. The fully matched sequence was alkylated with 88% selectivity over other mismatched sequences. In addition, the PI polyamide failed to attach to the target sequence lacking the alkylation site after washing and streptavidin treatment. Therefore, the PI polyamide discriminated the one mismatched nucleotide at the single-molecule level, and alkylation anchored the PI polyamide to the target dsDNA.  相似文献   

18.
In this study we synthesized a novel graphene-oxide (GO) based CNG repeat hairpin probing system capable of detecting target CAG and CTG DNA repeat sequences. The fluorescence of the 30-mer CNG repeat hairpin structure was quenched dramatically by GO in the absence of the target sequence, with a high quenching constant [K = 0.030 (mg/mL)?1]. We optimized the quenching behavior of this probing system by using graphene oxide (GO) to induce a high degree of discrimination factor (44.6 times) between the fluorescence of the target sequence and that of other non-target sequences. All detection process is explained by displacement mechanism using adsorption, desorption, and hybridization of probe with target DNA sequence on the GO. Graphene-oxide (GO) based CNG repeat hairpin probing system exhibited high sensitivity and selectivity to the target CNG repeat sequence and its detection process is so simple and quick.  相似文献   

19.
20.
Electrochemical monitoring of DNA hybridization related to p53 gene sequence was investigated using genomagnetic assay combined with single walled carbon nanotube (SWCNT) modified pencil graphite electrodes (PGEs). The hybridization was performed either at magnetic beads (MB) surface or in solution. The enhanced guanine signal was obtained using SWCNT‐PGEs compared to one obtained by unmodified PGEs. The selectivity of genomagnetic assay was tested under optimum conditions. The DLs were calculated as 0.88 µM and 0.11 µM for hybridization performed at MB surface and solution, respectively. This selective, practical and cost effective genomagnetic assay combined with SWCNT‐PGEs is reported herein for the first time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号