首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在微型反应器中,以氧化铝-分子筛为担体的Ni-Mo催化剂对环己烷中的菲的加氢裂解动力学进行了研究。考察了温度、压力和气液比对反应的影响。利用非线性Marquart方法对实验数据进行了回归,得到幂指数随温度倒数线性变化的幂速率方程,经动力学模型识别与检验,建立了菲加氢裂解反应的动力学速率方程。  相似文献   

2.
水溶性分散型加氢催化剂催化作用的研究   总被引:17,自引:2,他引:17  
以克拉玛依减压蜡油(VGO)为反应体系,对以水溶性分散型催化剂为催化体系的渣油加氢裂化过程外甩催化剂进行了分离和分析,发现单组分催化剂在反应过程中分别是以NiS(Ni7S6)、MoS2和Fe1-xS的形式存在。以二苯甲烷和克拉玛依VGO为模型化合物和反应原料,对钼、镍、铁元素单组分催化剂催化性能的研究结果表明,硫化态金属催化剂产生氢自由基中间体氢化不饱和键的“氢化活性”不同,钼催化剂明显优于镍催化剂,镍催化剂优于铁催化剂;不同催化剂抑制大分子自由基之间缩合生焦的能力也不相同,钼催化剂的抑焦能力最强,镍催化剂次之,铁催化剂的抑焦能力较差。  相似文献   

3.
综述了中国科学院大连化学物理研究所烷烃加氢异构化和加氢异构裂化反应催化剂的研发历程、工业应用及对我国石油炼制工业所做的贡献.1960年代,大连化学物理研究所在烷烃加氢异构化的研究中提出了"电子.酸性催化剂杂交规律",并相继成功研发石蜡基重油加氢异构裂化催化剂和重油单段加氢异构裂化催化剂,并应用于从大庆石蜡基原油馏分生产低冰点航空煤油.重油单段加氢异构裂化催化剂在大庆炼油厂建成的40万吨/年加氢异构裂化装置工业应用已20多年,创造了巨大的经济和社会效益.进入21世纪,大连化学物理研究所又开发出了以分子筛为载体的润滑油基础油加氢异构脱蜡催化剂,于2008年在中国石油大庆炼化公司建成20万吨/年的工业装置实现工业化应用.  相似文献   

4.
采用机械球磨法制备NiMo催化剂,通过XRD、XPS等表征其结构,探究Ni/(Ni+Mo)比对催化剂组成和结构及菲加氢性能的影响。结果表明,该法制备的催化剂活性组分Ni和Mo的分散性好,为孔径集中分布于2-10 nm的介孔催化剂。随Ni/(Ni+Mo)比增加,催化剂的比表面积和MoIV含量呈现出先增加后降低趋势,均于0.33处达到最高。适量Ni促进Mo硫化形成NiMoS活性相,过量的Ni会形成Nix Sy,覆盖活性位点,降低加氢活性。恒定Ni/(Ni+Mo)比为0.33,催化剂的比表面积随Ni、Mo含量增加明显降低,而MoIV含量增加。增加硫化剂硫代硫酸铵(ATS)的用量,可同时提高催化剂的比表面积和MoIV的含量。Ni/(Ni+Mo)比对菲转化率的影响表现出与催化剂中MoIV含量相一致的变化趋势,当Ni/(Ni+Mo)比为0.33时,菲转化率达最高值74.7%。在该比例下,Ni、Mo含量及S/Mo比分别增至4.8%、16%和4.5时,菲的转化率达96.5%,八氢菲和全氢菲的总选择性和产率分别为83...  相似文献   

5.
新型糠醛加氢制糠醇催化剂研究   总被引:8,自引:0,他引:8  
新型糠醛加氢制糠醇催化剂研究林培滋,黄世煜,周焕文,赵彤彤,刘崇早,罗洪原,梁东白(中国科学院大连化学物理研究所,大连116023)关键词铜催化剂,糠醛,加氢,糠醇糠醇是重要的化工原料,糖醇树脂是耐酸、碱腐蚀的材料,在工业发达的国家中,铸造工业广泛采...  相似文献   

6.
牛国兴  张伟  李全芝 《催化学报》1995,16(3):190-195
应用XRD,XPS,IR-TPD,CO2和NO吸附及正庚烷裂解和噻吩加氢脱硫脉冲微反等方法,研究了加氢处理催化剂载体经Y型分子筛改性前后各种性质的变化,结果表明,载体经Y型分子筛改性后,催化剂的B酸、正庚烷裂解活性和异构选择性明显提高,Y型分子筛以分散的形式分布于γ-Al2O3表面,减少了载体表面的空位铝,该催化剂中有盯当一部分金属组分进入Y型分子筛孔道与3其B酸位作用,与NiQ/γAl2O3相比  相似文献   

7.
本文对苯酐选择性加氢制苯酞的催化剂进行了详细研究.研究结果表明,采用共沉淀法制备的Ni-Cr-O/Al2O3催化剂具有较高活性和选择性.XRD研究表明,H2还原前催化剂呈晶体结构,还原后出现弥散峰.由XRD,XPS,SEMS研究表明Ni2.5+~2.6+是活性物种,失活原因是由于在反应中镍还原为低价和零价,物理上是由于活性组分颗粒的聚集,颗粒变大,比表面下降.TPD研究表明Cr的作用是使Tm升高,吸附量降低,从而提高了活性和选择性.  相似文献   

8.
胡博  王健捷  肖霞  于湛  赵震 《化学通报》2024,87(6):685-392
随着全球能源消耗的不断增长和环境污染问题的日益严重,寻找清洁、高效的CO2利用路径成为研究热点。甲醇由于用途广泛,既是重要的化工原料,也是一种新型清洁能源。CO2催化加氢制甲醇过程不仅实现CO2减排,还是碳资源循环利用的有效途径之一,对解决能源紧缺和环境问题具有重要意义。高活性、高选择性和高稳定性的CO2加氢制甲醇催化剂的开发一直是该过程的核心技术。本文综述了二氧化碳加氢制甲醇的研究进展,主要介绍了反应机理和催化剂,并以Cu基催化剂重点总结了活性位、载体和助剂对催化性能的影响,最后对二氧化碳加氢制甲醇的应用前景进行了展望。  相似文献   

9.
蒸汽裂解碳三馏分催化蒸馏选择加氢催化剂研究   总被引:2,自引:0,他引:2  
介绍了碳三馏分选择加氢填料状催化剂的制备,实验室内以氧化铝为原料得到的环状催化剂可以用于碳三馏分催化蒸馏选择加氢工艺,这是催化蒸馏技术在选择加氢中的重要应用,具有良好的应用前景.  相似文献   

10.
11.
A series of hydrocracking catalysts based on mesoporous molecular sieves MCM-41 and SBA-15 with different silica to alumina ratios was prepared. Nickel and molybdenum were used as active metals to impregnate the extrudates prepared by using molecular sieves. The catalysts were characterized for physical and chemical properties and evaluated for the hydrocraking of desulfurised vacuum gas oil. The conversion of DS-VGO was lower as compared to that of the catalyst based on USY zeolite. However, the gas yield was lower in case of mesoporous materials based catalysts.  相似文献   

12.
Catalysts of liquid-phase hydrocracking ofn-alkanes with higher activity than Ru-black were obtained by decomposition of Ru3(CO)12 and Ru3(CO)12 +i-Bu2AlH in alkanes at 180–200°C and 5 MPa H2 and (benzene)(1,3-cyclohexadiene)ruthenium at 20°C and 0.1 MPa H2. The system based on Ru3(CO)12 +i-Bu2AlH is x-ray amorphous, and the remainder have a 30–60 Å particle size.A. N. Nesmeyanov Institute of Organoelemental Compounds, Russian Academy of Sciences, 117813 Moscow. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 5, pp. 1211–1213, May, 1992.  相似文献   

13.
以Ni/W为加氢金属组分, HY/Al2O3为载体, 采用浸渍法制备三种金属-载体不同结合方式的加氢裂化催化剂, 研究了结合方式对催化剂酸性、加氢性能及FT合成蜡加氢裂化性能的影响。调整金属-载体的结合方式可明显调节催化剂加氢性能与裂解性能之间的平衡, Ni/W预先浸渍在HY分子筛上提高了催化剂的加氢性能, 降低了载体的酸性。结果表明, 高加氢性能-弱酸性的匹配有利于抑制F-T蜡的二次裂解, 提高柴油选择性。而Ni/W均匀浸渍在HY/Al2O3载体上可获得相对均衡的加氢/裂解性能匹配, 催化剂具有较高的反应活性及灵活的反应调控性。  相似文献   

14.
在高压连续流动微型反应器上对加氢裂化催化剂进行催速老化实验,用元素分析、傅里叶变换红外光谱(FTIR)、X-光电子能谱(XPS)、热重/微商热重(TG/DTG)等手段考察了不同体积分数的噻吩、吡啶和操作压力对催化剂积炭行为的影响。结果发现:原料中吡啶和噻吩体积分数分别高于0.1%和0.6%时,会导致催化剂积炭明显增加。含吡啶的原料在进行加氢裂化时生成的积炭,主要集中在微孔(<6 nm)中,并会削弱催化剂的酸性中心,尤其是强酸中心。含噻吩原料加氢裂化生成的积炭,存在于不同孔径的孔中,在催化剂表面形成少量机械孔。原料中噻吩体积分数低于0.6%时,噻吩中的硫可以提高催化剂的硫化度使积炭减缓。相同体积分数的吡啶对催化剂积炭的贡献大于噻吩,催化剂比表面积降低更多。提高压力可以显著地降低催化剂的积炭量,减缓比表面的降低,减少酸中心数目的损失,导致微孔(<6 nm)中积炭增多,积炭中石墨型积炭的相对比例增大。  相似文献   

15.
采用后合成法制备Hβ/Al-SBA-15复合分子筛,利用XRD、N_2吸附、Py-IR、NH_3-TPD、SEM和TEM等手段进行表征。用浸渍法将Ni-W活性组分担载在Hβ/Al-SBA-15载体上,制备Ni-W/Hβ/Al-SBA-15催化剂,以萘为模型化合物,考察该催化剂的加氢裂化性能。结果表明,所合成的Hβ/Al-SBA-15复合分子筛既有介孔结构又有微孔结构,并同时具有B酸和L酸中心,酸性强于SBA-15。具有适度酸性位和介微孔结构的Ni-W/Hβ/Al-SBA-15催化剂,对萘加氢裂化具有较高的萘转化率和BTX选择性,分别为96%和61.1%。  相似文献   

16.
以哈密热解焦油重质馏分悬浮床加氢裂化后的轻质油为原料,对其性质进行了分析,轻质油保留了煤的基本单元结构特点,富含芳烃类和环烷烃类化合物,氮含量较高;采用200 mL固定床精制-裂化串联装置,对轻质油原料进行了加氢裂化制取石脑油的研究;反应压力15 MPa下,考察了不同温度对加氢裂化反应的影响。结果表明,适宜的裂化段温度为390℃,此温度下,180℃馏分转化率为53.69%,氢耗5.13%,180℃石脑油收率56.8%,裂化后石脑油主要以C_(6-9)类烃类物质为主,其中,环烷烃含量为71.99%,芳烃含量3.13%,芳潜值70.1;以最佳工艺条件下产出裂化石脑油为原料,进行了催化重整制取BTXE的研究,采用石油系中间基石脑油作为对比,裂化石脑油重整后BTXE类物质总产率为55.85%,较石油基石脑油生成量高25.53%,彰显了煤基油的优势和特点,验证了煤热解重油裂化石脑油是制取BTXE类物质良好的原料。  相似文献   

17.
采用水热晶化法,合成出了含骨架杂原子Ni的NiY分子筛。分别以Y分子筛和NiY分子筛作为载体,通过等体积浸渍法担载金属活性组分Ni、Mo,制备加氢裂化催化剂。通过NH3-TPD表征催化剂的表面酸性、固定床反应器评价催化剂的加氢裂化性能。结果表明,将Ni引入分子筛骨架中,可以调变催化剂的表面酸性,提高其裂化和脱硫活性,并减少催化剂上的积炭。  相似文献   

18.
在间歇式反应釜中,考察了氢分压3MPa~28MPa对叔丁基苯和正丁基苯裂化反应的影响。结果表明,氢分压变化对不同分子结构的反应物有不同的影响。叔丁基苯的转化率随氢分压的升高而提高,正丁基苯的转化率随氢分压的升高而降低。氢分压的提高促进了与芳香环连接的碳键的断裂,与反应物的分子结构无关。在此基础上,考察了初氢压的变化对轮古常压渣油(LGAR)和克拉玛依常压渣油(KMAR)悬浮床加氢裂化的影响,讨论了温度和反应时间对悬浮床加氢过程的影响,初氢压的提高对渣油的转化和甲苯不溶物的生成都有促进作用。  相似文献   

19.
Iron-manganese catalysts were prepared by co-precipitation method.Characterization of catalysts was carried out by using X-ray diffraction(XRD),scanning electron microscopy(SEM),temperature program reduction(TPR),N2 adsorption-desorption measurements.The results from catalytic performance tests in Fischer-Tropsch synthesis showed that the iron-manganese catalysts are supersensitive to catalyst composition and materials source.It was found that C2~4 light olefins increased while CH4 and CO2 decreased by using iron-manganese catalyst prepared from iron(II) sulfate(A catalyst).The activity and selectivity of A catalyst was studied in different operational conditions.The results showed that the best operational conditions for C2~4 light olefins production were H2/CO=1/1(GHSV=2400h-1) at 260℃ under 0.3MPa total pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号