首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactions of aryl-stabilized sulfur ylides with organoboranes has been studied under a variety of conditions. At 5 or -78 degrees C, the reaction with Et3B gave a mixture of the first and second homologation products, but at -100 degrees C, only the first homologation product was obtained even with just 1.1 equiv of Et3B. Under these optimized conditions, the chiral sulfur ylides (derived from camphor sulfonic acid) with different aryl groups were reacted with Et3B to give the corresponding alcohols (95-98% yield, 96-98% ee) and amines (74-77% yield, >98% ee). The origin of the high enantioselectivity is discussed. The use of nonsymmetrical 9-BBN derivatives was also explored. It was found that whereas primary alkyl substituents gave mixtures of products derived from competing migration of the boron substituent and the boracycle, all other groups resulted in either exclusive migration of the boron substituent (Ph, hexenyl, i-Pr) or exclusive migration of the boracycle (hexynyl, cyclopropyl). The factors responsible for the outcome of the reactions involving a hindered (i-Pr) and an unhindered (propynyl) substituent were studied by DFT calculations. This revealed that, in the case of an unhindered substituent, the conformation of the ate complex is the dominant factor whereas, in the case of a hindered substituent, the barriers to interconversion between the conformers of the ate complex and subsequent migration control the outcome of the reaction.  相似文献   

2.
The salt-free Wittig reaction of non-, semi-, and stabilized ylides has been investigated on realistic systems using density functional theory (DFT) calculations, including continuum solvation. Our results provide unequivocal support for the generally accepted mechanism and are in very good agreement with experimental selectivities. This study shows that E/Z selectivity of non- and semi-stabilized ylides cannot be fully understood without considering the energy of the elimination TS. The influence of ylide stabilization and the nature of phosphorus substituents on reversibility of oxaphosphetane formation is clarified. Unexpectedly, the puckering ability of addition TSs is shown not to depend on ylide stabilization, but the geometry of the TS is decided by an interplay of 1,2; 1,3; and C-H...O interactions in the case of non- and semi-stabilized ylides, whereas a dipole-dipole interaction governs the addition TS structures for stabilized ylides. The well-known influence of ylide stabilization on selectivity of PPh(3) derivatives is explained as follows: in non- and semi-stabilized ylides reactions, cis and trans addition TSs have, respectively, puckered and planar geometries, and selectivity is governed by an interplay of 1,2 and 1,3 interactions. For stabilized ylides, the high E selectivity is due to a strong dipole-dipole interaction at the addition TS. The influence of the nature of phosphorus substituents on selectivity is also detailed, the different behavior of (MeO)(3)PCHCO(2)Me ylides being explained by their lower dipole. This novel picture of the factors determining TS structures and selectivity provides a sound basis for the design of new ylides.  相似文献   

3.
The effect of temperature and keto ylides structure on preference of their intramolecular cyclization leading to N-containing heterocyclic compounds or linear products formation has been investigated at the B3LYP/6-31G(d,p) level of theory. It has been determined that the thermodynamic advantage of the cyclization reactions of ylides increases with temperature, while Gibbs free energies of linear products formation reactions depend insignificantly on temperature. The Wittig and the Corey–Chaykovsky reactions are least probable in the case of the sulfonium and ammonium ylides considered. However, for phosphonium ylides the Wittig reaction must be considerably preferable in comparison with other routes, while behavior of the arsonium ylides is predicted to be more complex. Research of S-ylides transformations shows that formation of methylthio-substituted heterocycles with five-, six- or seven- membered rings is possible from a thermodynamic standpoint, while conversion of the corresponding ylide to a four-membered heterocycle is disadvantageous. Presence of a methyl substituent and its position in the ylide carbon chain depends ambiguously on the behavior of sulfur keto ylides.  相似文献   

4.
The salt-free Wittig reaction of stabilized ylides Ph3PCHCO2Me 1 and (MeO)3PCHCO2Me 2 has been investigated using DFT method including solvation. This analysis shows that TS structures and E/Z selectivity in the phosphine stabilized ylide 1, which gives high E selectivity with PhCHO, are predominantly controlled by a dipole-dipole interaction between the two reactants at the TS (as well as the well-known 1,2 and 1,3 steric interactions). The surprisingly different behavior of the phosphite ylide 2, which gives only 69:31 E/Z ratio with PhCHO, is accounted for by its much smaller overall dipole. The introduction of this new parameter (dipole-dipole interactions), which has not previously been invoked in discussions of this important reaction, accommodates all the experimental observations relating to selectivity in the Wittig reaction of stabilized ylides under salt-free conditions.  相似文献   

5.
The mechanism and diastereoselectivity of synthetically useful sulfur ylide promoted cyclopropanation reactions have been studied using the density functional theory method. Addition of different substituted ylides (Me2S+CH-R) to enone ((E)-pent-3-en-2-one, MeHC=CH-COMe) has been investigated. The nature of the substituent on the ylidic carbon brings about subtle changes in the reaction profile. The stabilized (R=COMe) and semistabilized (R=Ph) ylides follow a cisoid addition mode, leading to 1,2-trans and 1,2-cis cyclopropanes, respectively, via syn and anti betaine intermediates. The simplest and highly reactive model ylide (R=H) prefers a transoid addition mode. Diastereoselectivity is controlled by the barrier for cisoid-transoid rotation in the case of stabilized ylides, whereas the initial electrophilic addition is found to be the diastereoselectivity-determining step for semistabilized ylides. High selectivity toward trans cyclopropanes with stabilized ylides are predicted on the basis of the relative activation energies of diastereomeric torsional transition states. The energy differences between these transition states could be rationalized with the help of weak intramolecular as well as other stereoelectronic interactions.  相似文献   

6.
The reaction of ester-stabilized sulfonium ylides with cyclopentenone to give (+)-5 ((1S,5R,6S)-ethyl 2-oxobicyclo[3.1.0]hexane-6-carboxylate), an important precursor to the pharmacologically important compound (+)-LY354740, has been studied using chiral sulfides operating in both catalytic (sulfide, Cu(acac)2, ethyl diazoacetate, 60 degrees C) and stoichiometric modes (sulfonium salt, base, room temperature). It was found that the reaction conditions employed had a major influence over both diastereo- and enantioselectivity. Under catalytic conditions, good enantioselectivity with low diastereoselectivity was observed, but under stoichiometric conditions low enantioselectivity with high diastereoselectivity was observed. When the stoichiometric reactions were conducted at high dilution, diastereoselectivity was reduced. This indicated that base-mediated betaine equilibration was occurring (which is slow relative to ring closure at high dilution). Based on this model, conditions for achieving high enantioselectivity were established as follows: use of a preformed ylide, absence of base, hindered ester (to reduce ylide-mediated betaine equilibration), and low concentration. Under these conditions high enantioselectivity (95 % ee) was achieved, albeit with low diastereocontrol. Our model for selectivity has been applied to other sulfonium ylide mediated cyclopropanation reactions and successfully accounts for the diastereoselectivity observed in all such reported reactions to date.  相似文献   

7.
meso-Tetrakis(p-tolyl)porphyrinatoruthenium(II) carbonyl, [Ru(II)(TTP)(CO)], can effect intermolecular sulfonium and ammonium ylide formation by catalytic decomposition of diazo compounds such as ethyl diazoacetate (EDA) in the presence of allyl sulfides and amines. Exclusive formation of [2,3]-sigmatropic rearrangement products (70-80% yields) was observed without [1,2]-rearrangement products being detected. The Ru-catalyzed reaction of EDA with disubstituted allyl sulfides such as crotyl sulfide produced an equimolar mixture of anti- and syn-2-(ethylthio)-3-methyl-4-pentenoic acid ethyl ester. The analogous "EDA + N,N-dimethylcrotylamine" reaction afforded a mixture of anti- and syn-2-(N,N-dimethylamino)-3-methyl-4-pentenoic acid ethyl esters with a diastereoselectivity of 3:1. The observed catalytic activity of [Ru(II)(TTP)(CO)] for the ylide [2,3]-sigmatropic rearrangement is comparable to the reported examples involving [Rh(2)(CH(3)CO(2))(4)] and [Cu(acac)(2)] as catalyst. Similarly, cyclic sulfonium and ammonium ylides can be produced by intramolecular reaction of a diazo group tethered to allyl sulfides and amines under the [Ru(II)(TTP)(CO)]-catalyzed reaction conditions. The subsequent [2,3]-sigmatropic rearrangement of the cyclic ylides furnished 2-allyl-substituted sulfur and nitrogen heterocycles in good yields (>90%). By employing [Ru(II)(TTP)(CO)] as catalyst, the cyclic ammonium ylide [2,3]-sigmatropic rearrangement reaction was successfully applied for the total synthesis of (+/-)-platynecine starting from cis-2-butenediol.  相似文献   

8.
Lu CD  Liu H  Chen ZY  Hu WH  Mi AQ 《Organic letters》2005,7(1):83-86
The Rh(II)-catalyzed three-component reaction of aryl diazoacetates, alcohols and aldehydes was explored, which provided evidence of alcoholic oxonium ylide formation for O-H insertion. A new C-C bond formation reaction where alcoholic oxonium ylides were trapped by electron-deficient aryl aldehydes (or imines) was realized.  相似文献   

9.
The reaction of carboxylate-stabilised sulfur ylides (thetin salts) with aldehydes and ketones has been investigated. Using both achiral and chiral sulfur ylides, good yields were obtained with dimsylsodium or LHMDS as bases in DMSO or THF-DMSO mixtures. However, the enantioselectivities observed with a camphor-based sulfide were only moderate (up to 67%). The reaction was studied mechanistically by independent generation of the betaine (via the hydroxyl sulfonium salt) in the presence of a more reactive aldehyde, which resulted in incorporation of the more reactive aldehyde and showed that betaine formation was reversible. Thus, the moderate enantiomeric excess observed is a consequence of the enantiodifferentiating step being the ring closure step rather than the betaine forming step. We had expected betaine formation might be non-reversible because a carboxylate-stabilised ylide has only slightly higher stability than a phenyl-stabilised ylide, which does largely react non-reversibly with aldehydes. Evidently, a carboxylate-stabilised ylide is significantly more stable than a phenyl-stabilised ylide and as such reacts reversibly with aldehydes.  相似文献   

10.
Diazoketones were subjected to carbene-transfer with Rh(II) or Cu(II) catalysts to probe the selectivity for rearrangement via five- or six-membered oxonium ylides. 4,5-Bis(benzyloxy) and 4-allyloxy-5-benzyloxy substrates 3a,b showed a large preference for rearrangement via the five-membered ylide under all conditions. However, a sharp divergence was seen with 5-allyloxy-4-benzyloxy substrate 3c, which underwent predominantly a [2,3]-shift to pyran 5c via the six-membered ylide with Cu(II) catalysis and a [1,2]-shift to furan 4c via the five-membered ylide with Rh(II) catalysis.  相似文献   

11.
The beta-keto phosphorus ylides (n-Bu)3P=CHC(O)Ph 6, (t-Bu)2PhP=CHC(O)Ph 7, (t-Bu)Ph2P=CHC(O)Ph 8, (n-Bu)2PhP=CHC(O)Ph 9, (n-Bu)Ph2P=CHC(O)Ph 10, Me2PhP=CHC(O)Ph 11 and Ph3P=CHC(O)(o-OMe-C6H4) 12 have been synthesized in 80-96% yields. The Ni(II) complexes [NiPh{Ph2PCH...C(...O)(o-OMeC6H4)}(PPh3)] 13, [NiPh{Ph(t-Bu)PCHC(O)Ph}(PPh3)] 15, [NiPh{(n-Bu)2PCH...C(...O)Ph}(PPh3)] 16 and [NiPh{Ph(n-Bu)PCH...C(...O)Ph}(PPh3)] 17 have been prepared by reaction of equimolar amounts of [Ni(COD)2] and PPh3 with the beta-keto phosphorus ylides 12 or 8-10, respectively, and characterized by 1H and 31P{1H} NMR spectroscopy. NMR studies and the crystal structure determination of 13 indicated an interaction between the hydrogen atom of the C-H group alpha to phosphorus and the ether function. The complexes [NiPh{Ph2PCHC(O)Ph}(Py)] 18, [NiPh{Ph(t-Bu)PCHC(O)Ph}(Py)] 19, [NiPh{(n-Bu)2PCH...C(...O)Ph}(Py)] 20, [NiPh{Ph(n-Bu)PCH...C(...O)Ph}(Py)] 21 and [NiPh{Me2PCH...C(...O)Ph}(Py)] 22 have been isolated from the reactions of [Ni(COD)2] and an excess of pyridine with the -keto phosphorus ylides Ph3PCH=C(O)Ph 3 or 8-11, respectively, and characterized by 1H and 31P{1H} NMR spectroscopy. Ligands 3, 8, 10 and 12 have been used to prepare in situ oligomerization catalysts by reaction with one equiv. of [Ni(COD)2] and PPh3 under an ethylene pressure of 30 or 60 bar. The catalyst prepared in situ from 12, [Ni(COD)2] and PPh3 was the most active of the series with a TON of 12700 mol C2H4 (mol Ni)-1 under 30 bar ethylene. When the beta-keto phosphorus ylide 8 was reacted in situ with three equiv. of [Ni(COD)2] and one equiv. of PPh3 under 30 bar of ethylene, ethylene polymerization was observed with a TON of 5500 mol C2H4 (mol Ni)-1.  相似文献   

12.
By a sidearm approach, camphor-derived sulfur ylides 1 were designed and synthesized for the cyclopropanation of electron-deficient alkenes and epoxidation of aldehydes. Under the optimal conditions, the exo-type sulfonium salts 4a and 4b reacted with beta-aryl-alpha,beta-unsaturated esters, amides, ketones, and nitriles to give 1,3-disubstituted-2-vinylcyclopropanes with high diastereoselectivities and enantioselectivities. When the endo-type sulfonium salts 5a and 5b were used, the diastereoselectivities were not changed, whereas the absolute configurations of the products became the opposite to those of the reactions of 4a and 4b. An ylide cyclopropanation of chalcone derivatives with phenylvinyl bromide in the presence of catalytic amount of chiral sulfonium salts 4b and 5b has been developed. The sidearmed hydroxyl group was found to play a key role in the control of enantioselectivity and diastereoselectivity. The origins of the high diastereoselectivity and enantioselectivity were also studied by density functional theory calculations, which reveal the importance of the hydrogen-bonding between the sidearmed hydroxyl group and the substrate in determining the diastereoselectivity and enantioselectivity. The ylides 1 were also successfully applied for the epoxidation of aromatic aldehydes.  相似文献   

13.
The reaction of an amide-stabilized sulfonium ylide bearing chiral groups on sulfur has been investigated. We have discovered that the camphor-derived amide-stabilized ylide reacts with aldehydes at -50 degrees C in ethanol to give glycidic amides in one step with up to 99% ee and complete diastereoselectivity. From analyzing reactions of different ratios of diastereomers at sulfur it was found that the major diastereomer gave very high enantioselectivity, while the minor one gave much lower selectivity (54% ee). Further mechanistic studies have revealed that enantioselectivity is controlled not in the betaine-forming step (C-C bond formation is reversible) but in the different barriers to bond rotation around the newly formed C-C of the two diastereomeric betaines. Further transformations of epoxyamides were investigated. It was found that epoxyamides could be converted into epoxyketones by reaction with organolithium reagents and that they could be ring-opened by nucleophiles with complete regioselectivity using Yb(OTf)3. The practicality of the process has been exemplified in the synthesis of SK&F 104353, a leukotriene D4 antagonist in the potential treatment of bronchial asthma.  相似文献   

14.
Allylic sulfonium salts 3, 5, 7, 11, 12, 13, and arsonium salt 14 react with aromatic, heteroaromatic, and alpha,beta-unsaturated N-sulfonylimines under solid-liquid phase-transfer conditions in the presence of KOH at room temperature to produce, respectively, vinyl-, (beta-phenylvinyl)-, and [beta-(trimethylsilyl)vinyl]aziridines in excellent yields within several minutes. In some cases, pyrroline compound 9 is obtained as a minor product. This aziridination reaction has also been carried out with preformed ylides, generated from sulfonium salts 3, 7, arsonium salt 14, and telluronium salts 15, 16 with a base in THF at -78 degrees C. In most examples, quantitative yields were achieved. However, the trans/cis selectivity of the reaction was not high in either case. A semistable allylic sulfonium ylide, i.e., dimethylsulfonium 3-(trimethylsilyl)allylide, was found to not undergo an expected [2,3]-sigma-rearrangement and so can also be used in this reaction.  相似文献   

15.
A range of N‐protected aziridines [N‐Tosyl (N‐Ts), N‐2‐trimethylsilylethanesulfonamide (N‐SES), Ntert‐butoxycarbonylamido (N‐Boc), and No‐nitrobenzenesulfonamide (oNs)] were prepared in moderate to good yield and with high enantiomeric excess of both isomers starting from N‐protected imines, using a sulfonium salt derived from Eliel’s oxathiane. The diastereoselectivities of the reactions are influenced by the imine N‐protecting group, the imine substituent, and the sulfide structure. An unusual cis selectivity was observed in the formation of N‐tosyl‐2‐phenyl‐3‐tert‐butylaziridine and No‐trimethylsilylethanesulfonamide‐2‐phenyl‐3‐tert‐butylaziridine, which was explained by using computational models. The analysis suggests that betaine formation in the case of N‐tosyl‐tert‐butylaldimine aziridination using oxathiane benzyl sulfonium ylide 1 ′ is reversible and that the selectivity is determined at the rotation step, which is unusual for semistabilized ylide aziridination. We have shown herein that the steric bulk of an imine substituent, in combination with a sterically demanding sulfonium ylide, can also affect the reversibility of the reaction. This is the first example of this sort involving aziridinations using semistabilized ylides.  相似文献   

16.
A simple and highly efficient method for the rearrangement of bromohydrins mediated by Et 2Zn to synthesize carbonyl compounds was described. Various beta-bromo alcohols were treated with 0.6 equiv of Et 2Zn to form a zinc complex in CH 2Cl 2 at room temperature for 2 h, followed by 1,2-migration to give the corresponding carbonyl compounds. This remarkable and clean rearrangement is general for acyclic and cyclic bromohydrins, and a variety of ring-expansive and -contractive carbonyl compounds were obtained in good to excellent yields according to the feature of the starting bromohydrins. The functional group tolerance of organozinc reagents in this reaction will be useful in organic synthesis. The scope and limitations of this rearrangement process were also investigated.  相似文献   

17.
Reaction of difluorocarbene with diarylmethanimines leads to the formation of gem-difluorinated NH-azomethine ylides, two types of competing transformations of which are found to be characteristic: a formal 1,2-H shift into N-(difluoromethyl)imines and 1,3-dipolar cycloaddition to electron-deficient multiple bonds. α,α,α-Trifluoroaceto-phenones are efficient dipolar traps for difluoro NH-ylides, the addition of which to the dipole proceeds regioselectively with the formation of 4-fluoro-2,5-dihydrooxazoles. According to the quantum-chemical calculations by the DFT B3LYP/6-31G* method, 1,3-dipolar cycloaddition of difluorinated NH-azomethine ylides to a C=O bond with the formation of 4-fluoro derivatives of oxazole has lower barrier of activation than the reaction, leading to another regioisomer; the formal 1,2-H shift in the ylide occurs intermolecularly with participation of an imine, a precursor of the ylide.  相似文献   

18.
The Wittig reaction of (1-adamantylmethylidene)triphenylphosphorane (Ph(3)P=CH(1-Ad)) with benzaldehyde was investigated, and the results were compared with those of other ylides. The substituent effect in the reaction of the ylide with benzaldehydes was determined by competition experiments, which gave a Hammett rho value of 3.2. The rho value is much larger than those reported for analogous reactions of Ph(3)P=CH(CH(2))(2)CH(3) (rho = 0.20) and Ph(3)P=CH(CH(3))(2) (rho = 0.59), indicating that the reaction mechanism differs for Ph(3)P=CH(1-Ad) and the other ylides. The cis/trans ratio of the product alkene is 74/26 for the reaction with the parent benzaldehyde and highly depends on the position of the substituent; ortho substituted benzaldehydes gave the trans alkenes up to 90%. Monitoring the reaction by means of (31)P NMR revealed that both cis and trans oxaphosphetane intermediates were formed and that the formation and decomposition of the cis oxaphosphetane are 7-12 times faster than those of the trans oxaphosphetane. From the comparison of the reaction of Ph(3)P=CH(1-Ad) + benzaldehyde with those of Ph(3)P=CH(CH(2))(2)CH(3) + benzaldehyde and benzophenone, and Ph(3)P=CH(CH(3))(2) + benzophenone, it was concluded that all the reactions with these nonstabilized ylides proceed via an electron-transfer mechanism and that the rate-determining step changes from the electron transfer step to that of radical combination when the substrate or ylide becomes more sterically demanding.  相似文献   

19.
A method for the enantioselective synthesis of γ-lactones through the reaction of enantioenriched sulfoxonium ylides, aldehydes, and ketenes was developed. Enantioenriched (98% ee) aminosulfoxonium ylide was subjected to reaction with a variety of aldehydes (both aromatic and aliphatic) and disubstituted ketenes, leading to the formation of α,β-substituted γ-lactones in moderate to very good diastereoselectivity (dr up to 95:5) and with enantiomeric excesses of up to 79% ee. Best levels of enantioselectivity were observed in the reactions of enantioenriched aminosulfoxonium ylide with isobutyraldehyde and various alkylarylketenes.  相似文献   

20.
The reactions of aryl-stabilized sulfonium ylides with trialkyl/triarylboranes have been investigated. Clean monohomologation of the boranes with only a small amount of the higher homologation products (<10%) was observed. The homologation products were isolated as the alcohols (treatment with H2O2/NaOH) and amines (treatment with NH2OSO3H). Although the reactions were conveniently conducted at 5 degrees C, the ylide reaction with tributylborane was very fast even at -78 degrees C (complete after 15 min). Use of chiral sulfides rendered the reactions asymmetric, and high enantioselectivity (>95% ee) was observed in all cases. The ylide-borane reaction was applied to short syntheses of the anti-inflammatory agents neobenodine and cetirizine, both of which contain a chiral diarylmethylalkoxy and diarylmethylamino moiety, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号