首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethylenediamine (EDA)-core poly(amidoamine) (PAMAM) succinamic acid dendrimers (Ex.SAH, where x refers to the generation) were synthesized and analyzed by polyacrylamide gel electrophoresis (PAGE), size-exclusion chromatography (SEC), potentiometric acid-base titration, and capillary zone electrophoresis (CZE). Various generations (E1.SAH-E7.SAH) PAMAMs and a succinamic acid terminated core-shell tecto(dendrimer) (E5(E3.SAH)(n)) were first analyzed by PAGE. PAGE results show that the relative mobilities of generation 2 to generation 7 dendrimers decreased with the increasing number of generations. The molecular mass of a generation 5 core generation 3 shell tecto(dendrimer) (denoted as E5(E3.SAH)(n)) was determined to be between the Mw of E6.SAH and E7.SAH. CZE analysis allowed the evaluation of electrophoretic properties of given-generation dendrimers. The electrophoretic mobilities of individual generations PAMAM polyanions are similar, indicating that the separation mainly depends on their approximately identical charge/mass ratio. The E5(E3.SAH)(n) tectodendrimer had a lower electrophoretic mobility, which was consistent with its lower charge/mass ratio. The combination of PAGE and CZE analysis provides an alternative and effective way to characterize this group of PAMAM-succinamic acid dendrimers.  相似文献   

2.
Generation 2 to generation 5 poly(amidoamine) (PAMAM) dendrimers having different terminal functionalities were analyzed by capillary electrophoresis (CE). Polyacrylamide gel electrophoresis was also used to assess the composition of the individual generations for comparison with the CE results. Separation of PAMAMs can be accomplished by either using uncoated silica or silanized silica capillaries, although reproducibility is poor using the uncoated silica capillary. To improve run-to-run reproducibility, silanized capillary was used and various internal standards were also tested. Relative and normalized migration times of primary amine terminated PAMAM dendrimers were then determined using 2,3-diaminopyridine (2,3-DAP) as an internal standard. Using silanized capillaries and internal standards, the relative and normalized migration times are fully reproducible and comparable between runs. Apparent dimensionless electrophoretic mobilities were determined and the results were compared to theoretical calculations. It is concluded that for PAMAMs a complex separation mechanism has to be considered in CE, where the movement of the ions is due to the electric field, but the separation is rather the consequence of the adsorption/desorption equilibria on the capillary wall ("electrokinetic capillary chromatography"). The described method may be used for quality control and may serve as an effective technique to analyze polycationic PAMAM dendrimers and their derivatives with different surface modifications.  相似文献   

3.
Desai A  Shi X  Baker JR 《Electrophoresis》2008,29(2):510-515
Various generations (G1-G8) of negatively charged poly(amidoamine) (PAMAM) succinamic acid dendrimers (PAMAM-SAH) were analyzed by CE using a poly(vinyl alcohol)-coated capillary. Due to its excellent stability and osmotic flow-shielding effect, highly reproducible migration times were achieved for all generations of dendrimer (e.g., RSD for the migration times of G5 dendrimer was 0.6%). We also observed a reverse trend in migration times for the PAMAM-SAH dendrimers (i.e., higher generations migrated faster than lower generation dendrimers) compared to amine-terminated PAMAM dendrimers reported in the literature. This reversal in migration times was attributed to the difference in counterion binding around these negatively charged dendrimers. This reverse trend allowed a generational separation for lower generation (G1-G3) dendrimers. However, a sufficient resolution for the migration peaks of higher generations (G4-G5) in a mixture could not be achieved. This could be due to their nearly identical charge/mass ratio and dense molecular conformations. In addition, we show that dye-functionalized PAMAM-SAH dendrimers can also be analyzed with high reproducibility using this method.  相似文献   

4.
Liu Q  Tian J  Zhang C  Yang H  Liu Y  Qin W  Liu Z 《Electrophoresis》2011,32(11):1302-1308
We examine the influence of cationic poly(amidoamine) (PAMAM) dendrimers on capillary electroseparation–UV analysis of proteins. PAMAMs adsorbing to the capillary surface suppressed the wall‐adsorption of proteins; meanwhile, PAMAMs added to the buffer exhibited selectivity toward proteins. Presence of 3×10?4 g/mL PAMAM generation one (G 1.0) in 30 mM phosphate, at pH 2.6, rendered significant enhancement in separation efficiency; the merged peaks of myoglobin and trypsin inhibitor were separated. Moreover, the protein–dendrimer interactions changed the inherent UV absorbance profiles of proteins. UV–Vis study showed that the absorbance of cytochrome C and transferrin increased at the detection wavelength of 214 nm; their detection sensitivity enhanced by 2.44 and 2.01‐folds, respectively, with addition of 5×10?4 g/mL PAMAM G 1.0.  相似文献   

5.
The poly(amidoamine) dendrimers having terminal isobutyramide (IBAM) groups were prepared by the reaction of isobutyric acid and the amine-terminated poly(amidoamine) dendrimers with generations (G) of 2 to 5 by using a condensing agent, 1,3-dicyclohexylcarbodiimide. 1H and 13C NMR revealed that an IBAM group was attached to essentially every chain end of the dendrimers. While the IBAM-terminated G2 dendrimer was soluble in water, the IBAM-terminated G3, G4, and G5 dendrimers exhibited the lower critical solution temperatures (LCSTs) at 75, 61, and 43 degrees C, respectively. Because the density of the terminal IBAM groups in the periphery of the dendrimer progressively increases with increasing dendrimer generation, the interaction of the IBAM groups might take place more efficiently, resulting in a remarkable decrease in the LCST. In addition, attachment of IBAM groups to poly(propylenimine) dendrimers could give the temperature-sensitive property, indicating that this is an efficient method to render dendrimers temperature sensitive.  相似文献   

6.
Terminal amine groups of poly(amidoamine) (PAMAM) dendrimers can be substituted with different functional groups for various applications. In this study, PAMAM derivatives with acetamide, hydroxyl, and carboxyl termini were synthesized from ethylenediamine (EDA) core generation 4 and 5 primary amine-terminated PAMAM dendrimers. The reaction products were purified with dialysis and subsequently characterized by polyacrylamide gel electrophoresis (PAGE), capillary electrophoresis (CE), size exclusion chromatography (SEC), matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry, potentiometric titration, 1H NMR, and 13C NMR. PAGE and CE electropherograms provide data regarding the purity, charge distribution, and electrophoretic mobility of the dendrimers and their derivatives. SEC and MALDI-TOF mass spectrometry detect the average absolute molar mass and the individual mass fractions, respectively. The combination of SEC with potentiometric titration provides quantitative evidence of the degree of the functional group substitution, while NMR techniques (both 1H NMR and 13C NMR) confirmed the changes in dendrimer surface functionalization. This study provides a general example for the comprehensive characterization of surface-functionalized PAMAM dendrimer nanoparticles. The synthesized dendrimer derivatives hold promise for environmental and medical applications.  相似文献   

7.
Dendrimers are unique polymers with globular shapes and well-defined structures. We previously prepared poly(amidoamine) (PAMAM) dendrimers having phenylalanine (Phe) residues at every chain end of the dendrimer as efficient gene carriers. In this study, we found that Phe-derivatized PAMAM dendrimers change their water solubility depending on temperature. The dendrimers were soluble in aqueous solutions at low temperatures, but they became water-insoluble at temperatures above a specific threshold, which is termed the lower critical solution temperature (LCST). Although the LCST of Phe-modified dendrimers decreased with increasing dendrimer generation, these dendrimers exhibited an LCST of 20-30 degrees C under physiological conditions. In addition, the LCST of the dendrimers was controlled by introducing isoleucine (Ile) residues at chain ends of dendrimers at varying ratios with respect to Phe residues. The PAMAM dendrimers are known to encapsulate various drug molecules. For these reasons, temperature-sensitive dendrimers might be useful as efficient drug carriers with controlled size and temperature-responsive properties.  相似文献   

8.
Poly(amidoamine)(PAMAM) dendrimers with a cinnamoyl shell were prepared by reacting full generation PAMAM dendrimers (G=3.0) with 2‐chloroethanol and cinnamoyl chloride, which resulted in densely packed polymerizable unsaturated groups on the periphery. The cinnamoyl shell of the dendrimers dimerized when irradiated under a UV light by using 5‐nitroacenaphthylene as an initiator in dilute dimethylformamide (DMF). FTIR, 1H NMR, UV‐Vis, SEC, and a viscosity test certified that the photocycloaddition of the cinnamoyl shell of the dendrimers took place within the molecules with the disappearance of double bond signals in the FTIR. 1H NMR spectra as well as the intrinsic viscosity and polydispersity value of the products both before and after irradiation showed no difference. It was further found that the cinnamoyl shell‐modified dendrimers possessed fluorescence property, and the fluorescence intensity became stronger when the shell was photocyclized under UV‐ irradiation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4147–4153, 2000  相似文献   

9.
The electrochemistry of a series of dendrimers was examined at the interface between two immiscible electrolyte solutions (ITIES), enabling study of non-redox-active dendrimers. Different generations of poly(propylenimine) (DAB-AM-n) and poly(amidoamine) (PAMAM) dendrimers were studied. In their protonated states, the dendrimers were transferred across the ITIES, with the electrochemical behavior observed depending on the dendrimer family, the generation number, and the experimental pH. The electrochemistry of the lower generations studied was characterized by well-defined peaks for both dendrimer families and with small peak-peak separations in the case of the PAMAM family. The voltammetry of the higher generations was more complex, showing distorted voltammograms and instability of the interface. The charges of the transferring dendrimers were calculated by convolution of the voltammetric data and were similar to the theoretical charges for DAB-AM-n. For PAMAM, only the lowest generation exhibited reversible behavior, with higher generations having irreversible behavior. Using cyclic voltammetry, low micromolar concentrations of the dendrimers were detected. The results show that electrochemistry at the ITIES can be a useful method for characterization of ionizable dendrimers and that voltammetry can be a simple method for detection of low concentrations of these multicharged species.  相似文献   

10.
Indium tin oxide (ITO) substrates were modified with a layer of poly(amidoamine) (PAMAM) dendrimers to change their surface properties and, in particular, the substrates' work function. The functionalization procedure involved the electrostatic adsorption of positively charged PAMAM dendrimers of generation five onto negatively polarized ITO surfaces. Three different PAMAM dendrimers were used: PAMAM-NH2 and PAMAM-OH with terminal amine and hydroxyl groups, respectively, as well as Q-PAMAM-NH2, which had been prepared from PAMAM-NH2 by quaternization of the dendrimer's terminal and internal amine groups with methyl iodide. The resulting organic films were analyzed by contact angle goniometry, X-ray photoelectron spectroscopy, ellipsometry, and Kelvin probe force microscopy to confirm the presence of a dense layer. A Langmuir isotherm was derived from surface densities of fluorescence-labeled PAMAM-NH2 dendrimers from which we deduced an equilibrium binding constant, K(eq), of (1.3 +/- 0.3) x 10(5) M(-1). Kelvin probe measurements of the contact potential difference revealed a high reduction of the work function from 4.9 eV for bare ITO to 4.3 eV for ITO with a dense film of PAMAM-NH2 of generation five. PAMAM-OH and Q-PAMAM-NH2 resulted in slightly smaller work function changes. This study illustrates that the work function of ITO can be tuned by adlayers composed of PAMAM dendrimers.  相似文献   

11.
The pyrene fluorescence measurements have been carried out for the micelle formation of sodium dodecyl sulfate (SDS), dodecyltrimethylammonium bromide (DTAB), and dimethylene bis(dodecyldimethylammonium bromide) (12-2-12) in the presence of fixed different amounts of various generations of poly(amidoamine) (PAMAM). The critical micelle concentration (cmc) of SDS decreases with an increase in the fixed amount of PAMAM, suggesting the facilitation of micellization due to the participation of SDS-PAMAM complex in the micelle formation. This behavior has not been observed for DTAB/12-2-12 in the presence of various generations of PAMAM. The results indicate that SDS always has stronger interactions with all the generations of PAMAM in comparison to those of DTAB and 12-2-12.  相似文献   

12.
Fragmentation of different generations of poly(amidoamine) dendrimers was explored in five common MALDI matrices: 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-3-methoxycinnamic acid (FER), α-cyano-4-hydroxycinnamic acid (ACH), 2,4,6-trihydroxyacetophenone (THAP), and 3-hydroxypicolinic acid (HPA). Of these, DHB was the softest matrix and ACH produced significant fragment intensity already at MALDI threshold, FER and THAP being in between. HPA was not a convenient matrix for dendrimers and produced a specific fragmentation pattern. Fragmentation analysis was mainly concentrated on generation G1, which contains already all essential structural elements. Dendrimers showed complicated fragmentation behavior with multiple fragmentation channels in our MALDI experiments. The relative intensities of these channels depended selectively on choice of the matrix and showed dissimilar dependence on the laser pulse energy. This was attributed to different fragmentation mechanisms, due to different protonation pathways, occurring in the same MALDI plume. The fragmentation pathways were proposed for all observed fragmentation channels. All fragmentation sites of protonated ions were found to be directly attached to the protonation sites and the fragmentation was surplus charge driven in this sense. No charge remote fragmentation channels were detected. Cationized dendrimers showed higher stability than the protonated ions.  相似文献   

13.
14.
This paper presents the photophysical and photochemical characteristics of four new poly(amidoamine) dendrimers of zero and second generation whose periphery has been modified with 1,8-naphthalimide units. Nitro- and allylamino groups have been used as substitutents at the C-4 position of the 1,8-naphthalimide fluorophores. The discussion is focused on the photodegradation of the dendrimers in N,N-dimethylformamide and dioxan solutions. Investigations have shown that the photodegradation of the dendrimers with 4-nitro substituted 1,8-naphthalimide proceed with yellow colour development in the solvent while no colour changes followed the same process in dendrimers with allylamino group substituent. The results also show that the photostability of the dendrimers depends on their generation.  相似文献   

15.
A cationic dendrimer-type tetrameric surfactant (C(8)qbG0) with four octyl chains and four ammonium groups was synthesized by the reaction of poly(amidoamine) dendrimers with generation of zero and glycidyldimethyloctylammonium bromide. The physicochemical properties of C(8)qbG0 and of their mixtures with sodium dodecyl sulfate (SDS) were characterized by investigating surface tension, electrical conductivity, fluorescence of pyrene, and dynamic light-scattering. The critical micelle concentration (cmc) of C(8)qbG0 was 13 mmol dm(-3) at the concentration of one terminal group and the surface tension at the cmc attained 34 mN m(-1). The occupied area of C(8)qbG0 was 1.94 nm(2) molecule(-1), indicating that the tetrameric dendrimers adsorb widely at the air/water interface. The fluorescence intensity ratio of the first-to-third band in the emission spectra of pyrene for C(8)qbG0 decreased from around the cmc obtained by the surface tension measurement. The hydrodynamic radius of C(8)qbG0 determined by dynamic light-scattering was about 1.3 nm. The addition of SDS to the aqueous solutions of C(8)qbG0 enhanced the surface activities; the mixtures exhibited lower cmc, lower surface tension, and higher solubilization of pyrene than SDS alone. It was found that the mixtures of C(8)qbG0 and SDS form large aggregates due to the interactions between their alkyl chains as well as hydrophilic groups.  相似文献   

16.
Poly(amidoamine) (PAMAM) dendrimer-based nanodevices are of recent interest in targeted cancer therapy. Characterization of mono- and multifunctional PAMAM-based nanodevices remains a great challenge because of their molecular complexity. In this work, various mono- and multifunctional nanodevices based on PAMAM G5 (generation 5) dendrimer were characterized by UV-Vis spectrometry, (1)H NMR, size exclusion chromatography (SEC), and capillary electrophoresis (CE). CE was extensively utilized to measure the molecular heterogeneity of these PAMAM-based nanodevices. G5-FA (FA denotes folic acid) conjugates (synthesized from amine-terminated G5.NH(2) dendrimer, approach 1) with acetamide and amine termini exhibit bimodal or multi-modal distributions. In contrast, G5-FA and bifunctional G5-FA-MTX (MTX denotes methotrexate) conjugates with hydroxyl termini display a single modal distribution. Multifunctional G5.Ac(n)-FI-FA, G5.Ac(n)-FA-OH-MTX, and G5.Ac(n)-FI-FA-OH-MTX (Ac denotes acetamide; FI denotes fluorescein) nanodevices (synthesized from partially acetylated G5 dendrimer, approach 2) exhibit a monodisperse distribution. It indicates that the molecular distribution of PAMAM conjugates largely depends on the homogeneity of starting materials, the synthetic approaches, and the final functionalization steps. Hydroxylation functionalization of dendrimers masks the dispersity of the final PAMAM nanodevices in both synthetic approaches. The applied CE analysis of mono- and multifunctional PAMAM-based nanodevices provides a powerful tool to evaluate the molecular heterogeneity of complex dendrimer conjugate nanodevices for targeted cancer therapeutics.  相似文献   

17.
Poly(amidoamine) (PAMAM) dendrimers are attracting great interest as a consequence of their unique properties as carriers of active molecules in aqueous media, as we expect their presence in the environment to be widespread in the future.In this article, we focus on the analytical methods to characterize and to determine these polymeric materials in waters and on their ecotoxicity for aquatic organisms. We review physical characterization techniques (e.g., light scattering, electron microscopy, atomic force microscopy) and analytical techniques, mainly based on liquid chromatography, so as to consider their main capabilities, advantages and drawbacks. We assessed the toxicity of certain PAMAM dendrimers for the green alga Pseudokirchneriella subcapitata by determining the EC50 and correlating it with the ζ-potential.  相似文献   

18.
Scanning force microscopy (AFM) has been employed to characterize the generation‐9 (G9) poly(amidoamine) (PAMAM) dendrimer packing on a mica surface under various conditions. Well ordered 2‐D arrays from hexagonally packed particles of PAMAM (G9) dendrimers (11.4nm in diameter) were deposited on the mica surface. This may be one of the smallest regular monolayer arrays ever observed. The mechanism considered to be responsible for this 2‐D array packing is the interaction of forces between the dendrimer and the mica surface and between dendrimer molecules as well. Other factors such as molecular interpenetrating and the rigidity of the branch structure obviously play an important role in the 2‐D array formation.  相似文献   

19.
A nanofiltration method has been developed in a microfluidic format for the continuous-flow pressure-driven purification of half-generation poly(amidoamine) (PAMAM) dendrimers, a family of macromolecules characterized by highly branching structures radiating from a central core, without additional solvents or buffers. An organic solvent resistant nanofiltration membrane, STARMEM 122, has been fully integrated into a hard polymer microfluidic module by transmission laser welding. The membrane was initially characterized in a bench-top test fixture to determine the solvent permeance and percent rejection of a surrogate molecule, Rhodamine B, at lower than typical operating pressures (P<7 bar). The microfluidic module then underwent similar testing at 1.4 bar with the surrogate and with the generation-0.5 PAMAM dendrimer. This approach to nanofiltration will readily interface to upstream microreactors.  相似文献   

20.
This paper describes an investigation of the uptake of Cu(II) by poly(amidoamine) (PAMAM) dendrimers with an ethylenediamine (EDA) core in aqueous solutions. We use bench scale measurements of proton and metal ion binding to assess the effects of (i) metal ion-dendrimer loading, (ii) dendrimer generation/terminal group chemistry, and (iii) solution pH on the extent of binding of Cu(II) in aqueous solutions of EDA core PAMAM dendrimers with primary amine, succinamic acid, glycidol, and acetamide terminal groups. We employ extended X-ray absorption fine structure (EXAFS) spectroscopy to probe the structures of Cu(II) complexes with Gx-NH2 EDA core PAMAM dendrimers in aqueous solutions at pH 7.0. The overall results of the proton and metal ion binding measurements suggest that the uptake of Cu(II) by EDA core PAMAM dendrimers involves both the dendrimer tertiary amine and terminal groups. However, the extents of protonation of these groups control the ability of the dendrimers to bind Cu(II). Analysis of the EXAFS spectra suggests that Cu(II) forms octahedral complexes involving the tertiary amine groups of Gx-NH2 EDA core PAMAM dendrimers at pH 7.0. The central Cu(II) metal ion of each of these complexes appears to be coordinated to 2-4 dendrimer tertiary amine groups located in the equatorial plane and 2 axial water molecules. Finally, we combine the results of our experiments with literature data to formulate and evaluate a phenomenological model of Cu(II) uptake by Gx-NH2 PAMAM dendrimers in aqueous solutions. At low metal ion-dendrimer loadings, the model provides a good fit of the measured extent of binding of Cu(II) in aqueous solutions of G4-NH2 and G5-NH2 PAMAM dendrimers at pH 7.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号