首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, rapid, sensitive, and accurate method for simultaneous electrochemical determination of procaine and its metabolite (p-aminobenzoic acid, PABA) for pharmaceutical quality control and pharmacokinetic research was developed using a graphite paste electrode. The differential pulse voltammetric results revealed that procaine and p-aminobenzoic acid, respectively, showed well-defined anodic oxidation peaks on a carbon paste electrode with a current peak separation of 155 mV at a scan rate of 100 mV s−1. This well separation of the current peaks for these two compounds in voltammetry enables us to simultaneously determine them. Good linearity (r > 0.998) between oxidation peak current and concentration was obtained in the range of 5.0 × 10−7–5.0 × 10−5 M for procaine and 5.0 × 10−7–2.0 × 10−5 M for PABA in pH 4.50 acetate buffer solution. The detection limit for both analytes is 5 × 10−8 M (S/N = 3:1). The present voltammetric method has been successfully used to determine trace p-aminobenzoic acid in procaine hydrochloride injection and procaine in plasma with a linear relationship of current to its concentration ranging from 1.0 × 10−6 to 5.0 × 10−5 M (correlation coefficient of 0.9981) with a low detection limit of 5.0 × 10−7 M (S/N = 3:1). This validated method is promising to the study of pharmacokinetics in Sprague–Dawley rat and rabbit plasma after an intravenous administration of procaine hydrochloride injection.  相似文献   

2.
A novel procedure was developed for the determination of trace cerium on the basis of anodic adsorption voltammetry of the Ce(III)–alizarin complexon (ALC) complex at a carbon paste electrode (CPE). The procedure is convenient to determine cerium individually in the presence of other rare earths because there is a 100 mV difference between the peak potentials of Ce(III)–ALC and other rare earth(III)–ALC complexes in a supporting electrolyte of 0.08 M HAc–NaAc and 0.012 M potassium biphthalate (pH 4.7) when performing linear-scanning from −0.2 to 0.8 V (vs. SCE) at 100 mV/s. The second-order derivative peak currents are directly proportional to the Ce(III) concentration over a range of 6.0 × 10−9–3.0 × 10−7 M. The detection limit is as low as 2.0 × 10−9 M (S/N = 3) for a 120 s preconcentration. An RSD of 3.5% was obtained for 15 determinations of Ce(III) at a concentration of 4.0 × 10−8 M on the same CPE surface. The method was applied successfully to the determination of cerium in samples of rare earth nodular graphite cast iron.  相似文献   

3.
A simple sensor based on bare carbon ionic liquid electrode was fabricated for simultaneous determination of dihydroxybenzene isomers in 0.1 mol L−1 phosphate buffer solution (pH 6.0). The oxidation peak potential of hydroquinone was about 0.136 V, catechol was about 0.240 V, and resorcinol 0.632 V by differential pulse voltammetric measurements, which indicated that the dihydroxybenzene isomers could be separated absolutely. The sensor showed wide linear behaviors in the range of 5.0 × 10−7–2.0 × 10−4 mol L−1 for hydroquinone and catechol, 3.5 × 10−6–1.535 × 10−4 mol L−1 for resorcinol, respectively. And the detection limits of the three dihydroxybenzene isomers were 5.0 × 10−8, 2.0 × 10−7, 5.0 × 10−7 mol L−1, respectively (S/N = 3). The proposed method could be applied to the determination of dihydroxybenzene isomers in artificial wastewater and the recovery was from 93.9% to 104.6%.  相似文献   

4.
A pencil graphite electrode coated by copper (II)–carmoisine dye complex in polyaniline (emeraldine base form) matrix (termed as PGE/PA/Cu-Car) was prepared and used as copper ion-selective electrode. The introduced electrode was found to have high selectivity toward copper ion (II) and exhibited wide working concentration range, low response time, and good shelf life. The sensor electrode showed a linear Nernstian response over the range of 5.0 × 10−6 to 1.0 × 10−1 M with a slope of 29.7 ± 1 mV per decade change in concentration. A detection limit of 2.0 × 10−6 M was obtained. The optimum pH working range of the electrode was found to be 4.0–7.0.  相似文献   

5.
A highly sensitive hydroxylamine (HA) electrochemical sensor is developed based on electrodeposition of gold nanoparticles with diameter of 8 nm on the pre-synthesized polypyrrole matrix and formed gold nanoparticles/polypyrrole (GNPs/PPy) composite on glassy carbon electrode. The electrochemical behavior and electrocatalytic activity of the composite-modified electrode are investigated. The GNPs/PPy composite exhibits a distinctly higher electrocatalytic activity for the oxidation of HA than GNPs with twofold enhancement of peak current. The enhanced electrocatalytic activity is attributed to the synergic effect of the highly dispersed gold metal particles and PPy matrix. The overall numbers of electrons involved in HA oxidation, the electron transfer coefficient, catalytic rate constant, and diffusion coefficient are investigated by chronoamperometry. The sensor presents two wide linear ranges of 4.5 × 10−7–1.2 × 10−3 M and 1.2 × 10−3–19 × 10−3 M with the detection limit of 4.5 × 10−8 M (s/n = 3). In addition, the proposed electrode shows excellent sensitivity, selectivity, reproducibility, and stability properties.  相似文献   

6.
Newly developed, simple, low-cost and sensitive ion-selective electrodes have been proposed for determination of some antiepileptic drugs such as lamotrigine, felbamate, and primidone in their pharmaceutical preparations as well as in biological fluids. The electrodes are based on poly(vinyl chloride) membranes doped with drug–tetraphenyl borate (TPB) or drug–phosphotungstic acid (PT) ion-pair complexes as molecular recognition materials. The novel electrodes displayed rapid Nernstian responses with detection limits of approximately 10−7 M. Calibration graphs were linear over the ranges 5.2 × 10−7–1.0 × 10−3, 1.5 × 10−6–1.0 × 10−3, and 2.6 × 10−7–1.0 × 10−3 M for drug–TPB and 5.8 × 10−7–1.0 × 10−3, 1.8 × 10−7–1.0 × 10−3, and 6.6 × 10−7–1.0 × 10−3 M for drug–PT electrodes, respectively, with slopes ranging from 52.3 to 62.3 mV/decade. The membranes developed have potential stability for up to 1 month and proved to be highly selective for the drugs investigated over other ions and excipients. The results show that the selectivity of the ion-selective electrodes is influenced significantly by the plasticizer. The proposed electrodes were successfully applied in the determination of these drugs in pharmaceutical preparations in four batches of different expiry dates. Statistical Student’s t test and F test showed insignificant systematic error between the ion-selective electrode methods developed and a standard method. Comparison of the results obtained using the proposed electrodes with those found using a reference method showed that the ion-selective electrode technique is sensitive, reliable, and can be used with very good accuracy and high percentage recovery without pretreatment procedures of the samples to minimize interfering matrix effects. Figure Structure of lamotrigine, felbanate and primidone  相似文献   

7.
A square wave adsorptive stripping voltammetric (SWAdSV) method was developed for the determination of proflavine. The electrochemical behaviour of proflavine was investigated by cyclic (CV) and square wave voltammetry (SWV) at the hanging mercury drop electrode (HMDE) and carbon paste electrode (CPE). Different parameters were tested to optimize the conditions of the determination. Better results were obtained by square wave voltammetry using CPE where two oxidation and a reduction peak, appeared, at 0.19, 0.94 and 0.20 V, respectively. The peak at 0.19 V is quasi-reversible and deposition dependent. Linearity was observed in the range of (0.2–23.4) × 10−8 M (r = 0.998) during the anodic scan and in the range of (1.17–117) × 10−8 M (r = 0.999) during the cathodic scan. The second peak at 0.94 V is irreversible and deposition independent. The linearity of this peak was observed in the range of (1.29–11.7) × 10−8 M (r = 0.998). The method was applied to the analysis of bovine serum and gave satisfactory results. Correspondence: S. Th. Girousi, Laboratory of Analytical Chemistry, Department of Chemistry, Aristotle University, Thessaloniki 54124, Greece  相似文献   

8.
The dissociation equilibrium constant (K D) is an important affinity parameter for studying drug–receptor interactions. A vascular smooth muscle (VSM) cell membrane chromatography (CMC) method was developed for determination of the K D values for calcium antagonist–L-type calcium channel (L-CC) interactions. VSM cells, by means of primary culture with rat thoracic aortas, were used for preparation of the cell membrane stationary phase in the VSM/CMC model. All measurements were performed with spectrophotometric detection (237 nm) at 37 °C. The K D values obtained using frontal analysis were 3.36 × 10−6 M for nifedipine, 1.34 × 10−6 M for nimodipine, 6.83 × 10−7 M for nitrendipine, 1.23 × 10−7 M for nicardipine, 1.09 × 10−7 M for amlodipine, and 8.51 × 10−8 M for verapamil. This affinity rank order obtained from the VSM/CMC method had a strong positive correlation with that obtained from radioligand binding assay. The location of the binding region was examined by displacement experiments using nitrendipine as a mobile-phase additive. It was found that verapamil occupied a class of binding sites on L-CCs different from those occupied by nitrendipine. In addition, nicardipine, amlodipine, and nitrendipine had direct competition at a single common binding site. The studies showed that CMC can be applied to the investigation of drug–receptor interactions.  相似文献   

9.
A p-duroquinone (tetramethyl-p-benzoquinone) modified carbon paste electrode (DMCPE) was employed to study the electrocatalytic reduction of nitrite in aqueous solutions using cyclic voltammetry (CV), double potential-step chronoamperometry, and differential pulse voltammetry (DPV). It has found that under an optimum condition (pH 1.00), the reduction of nitrite at the surface of DMCPE occurs at a potential of about 660 mV less negative than that of an unmodified carbon paste electrode (CPE). The catalytic rate constant, kh, based on Andrieux and Saveant theoretical model was calculated as for scan rate 10 mV s-1. Also, the apparent diffusion coefficient, D app, was found as 2.5 × 10–10 and 3.61 × 10–5 cm2 s-1 for p-duroquinone in carbon paste matrix and nitrite in aqueous buffered solution, respectively. The values for αnα were estimated to be −0.65 and −0.19 for the reduction of nitrite at the surface of DMCPE and CPE, respectively. The electrocatalytic reduction peak currents showed a linear dependence on the nitrite concentration, and a linear analytical curve was obtained in the ranges of 5.0 × 10–5 M to 8.0 × 10–3 M and 6.0 × 10–6 M to 8.0 × 10–4 M of nitrite concentration with CV and DPV methods, respectively. The detection limits (2σ) were determined as 2.5 × 10–5 M and 4.3 × 10–6 M by CV and DPV methods. This method was also applied as a simple, selective and precise method for determination of nitrite in real samples (the weak liquor from the wood and paper factory of Mazandaran province in Iran) by using a standard addition method.  相似文献   

10.
A kind of erbium hexacyanoferrate (ErHCF)-modified carbon ceramic electrodes (CCEs) fabricated by mechanically attaching ErHCF samples to the surface of CCEs derived from sol–gel technique was proposed. The resulting modified electrodes exhibit well-defined redox responses with the formal potential of +0.215 V [vs saturated calomel electrode (SCE)] at a scan rate of 20 mV s−1 in 0.5 M KCl (pH 7) solution. The voltammetric characteristics of the ErHCF-modified CCEs were investigated by voltammetry. Attractively, the ErHCF-modified CCEs presented good electrocatalytic activity with a marked decrease in the overvoltage about 400 mV for l-cysteine oxidation. The calibration plot for l-cysteine determination was linear at 5.0 × 10−6–1.3 × 10−4 M with a linear regression equation of I(A) = 0.558 + 0.148c (μM) (R 2 = 0.9989, n = 20), and the detection limit was 2 × 10−6 M (S/N = 3). At last, the ErHCF-modified CCEs were used for amperometric detection of l-cysteine in real samples.  相似文献   

11.
A new H2O2 biosensor was fabricated on the basis of nanocomposite films of hemoglobin (Hb), silver nanoparticles (AgNPs), and multiwalled carbon nanotubes (MWNTs)–chitosan (Chit) dispersed solution immobilized on glassy carbon electrode (GCE). The immobilized Hb displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ′) of −22.5 mV in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) in the Chit–MWNTs film was evaluated as 2.58 s−1 according to Laviron’s equation. The surface concentration (Γ*) of the electroactive Hb in the Chit–MWNTs film was estimated to be (2.48 ± 0.25) × 10−9 mol cm−2. Meanwhile, the Chit–MWNTs/Hb/AgNPs/GCE demonstrated excellently electrocatalytical ability to H2O2. Its apparent Michaelis–Menten constant (K Mapp) for H2O2 was 0.0032 mM, showing a good affinity. Under optimal conditions, the biosensors could be used for the determination of H2O2 ranging from 6.25 × 10−6 to 9.30 × 10−5 mol L−1 with a detection limit of 3.47 × 10−7 mol L−1 (S/N = 3). Furthermore, the biosensor possessed rapid response to H2O2 and good stability, selectivity, and reproducibility.  相似文献   

12.
A new adsorbent is proposed for the solid-phase extraction of phenol and 1-naphthol from polluted water. The adsorbent (TX-SiO2) is an organosilica composite made from a bifunctional immobilized layer comprising a major fraction (91%) of hydrophilic diol groups and minor fraction (9%) of the amphiphilic long-chain nonionic surfactant Triton X-100 (polyoxyethylated isooctylphenol) (TX). Under static conditions phenol was quantitatively extracted onto TX-SiO2 in the form of a 4-nitrophenylazophenolate ion associate with cetyltrimethylammonium bromide. The capacity of TX-SiO2 for phenol is 2.4 mg g−1 with distribution coefficients up to 3.4 × 104 mL g−1; corresponding data for 1-naphthol are 1.5 mg g−1 and 3 × 103 mL g−1. The distribution coefficient does not change significantly for solution volumes of 0.025–0.5 L and adsorbent mass less than 0.03 g; 1–90 μg analyte can be easily eluted by 1–3 mL acetonitrile with an overall recovery of 98.2% and 78.3% for phenol and 1-naphthol, respectively. Linear correlation between acetonitrile solution absorbance (A 540) and phenol concentration (C) in water was found according to the equation A 540 = (6 ± 1) × 10−2 + (0.9 ± 0.1)C (μmol L−1) with a detection range from 1 × 10−8 mol L−1 (0.9 μL g−1) to 2 × 10−7 mol L−1 (19 μL g−1), a limit of quantification of 1 μL g−1 (preconcentration factor 125), correlation coefficient of 0.936, and relative standard deviation of 2.5%. A solid-phase colorimetric method was developed for quantitative determination of 1-naphthol on adsorbent phase using scanner technology and RGB numerical analysis. The detection limit of 1-naphthol with this method is 6 μL g−1 while the quantification limit is 20 μL g−1. A test system was developed for naked eye monitoring of 1-naphthol impurities in water. The proposed test kit allows one to observe changes in the adsorbent color when 1-naphthol concentration in water is 0.08–3.2 mL g−1.  相似文献   

13.
In this work, we investigate the electrochemical activity of dopamine (DA) and uric acid (UA) using both a bare and a modified carbon paste electrode as the working electrode, with a platinum wire as the counter electrode and a silver/silver chloride (Ag/AgCl) as the reference electrode. The modified carbon paste electrode consists of multi-walled carbon nanotubes (>95%) treated with α-cyclodextrine, resulting in an electrode that exhibits a significant catalytic effect toward the electro-chemical oxidation of DA in a 0.2-M Britton–Robinson buffer solution (pH 5.0). The peak current increases linearly with the DA concentration within the molar concentration ranges of 2.0 × 10−6 to 5.0 × 10−5 M and 5.0 × 10−5 to 1.9 × 10−4 M. The detection limit (signal to noise >3) for DA was found to be 1.34 × 10−7 M, respectively. In this work, voltammetric methods such as cyclic voltammetry, chronoamperometry, chronocuolometry, differential pulse and square wave voltammetry, and linear sweep and hydrodynamic voltammetry were used. Cyclic voltammetry was used to investigate the redox properties of the modified electrode at various scan rates. The diffusion coefficient (D, cm2 s−1 = 3.05 × 10−5) and the kinetic parameters such as the electron transfer coefficient (α = 0.51) and the rate constant (k, cm3 mol−1 s−1 = 1.8 × 103) for DA were determined using electrochemical approaches. By using differential pulse voltammetry for simultaneous measurements, we obtained two peaks for DA and UA in the same solution, with the peak separation approximately 136 mV. The average recovery was measured at 102.45% for DA injection.  相似文献   

14.
A glassy carbon electrode (GCE) modified with the film composed of chitosan incorporating cetylpyridine bromide is constructed and used to determine uric acid (UA) and ascorbic acid (AA) by differential pulse voltammetry (DPV). This modified electrode shows efficient electrocatalytic activity and fairly selective separation for oxidation of AA and UA in mixture solution. UA is catalyzed by this modified electrode in phosphate buffer solution (pH 4.0) with a decrease of 80 mV, while AA is catalyzed with a decrease of 200 mV in overpotential compared to GCE, and the peak separation of oxidation between AA and UA is 260 mV, which is large enough to allow the determination of one in presence of the other. Under the optimum conditions, the anodic peak currents (I pa) of DPV are proportional to the concentration of UA in the range of 2.0 × 10−6 to 6.0 × 10−4 M, with the detection limit of 5.0 × 10−7 M at a signal-to-noise ratio of 3 (S/N = 3) and to that of AA in the range of 4.0 × 10−6 to 1.0 × 10−3 M, with the detection limit of 8.0 × 10−7 M (S/N = 3).  相似文献   

15.
A novel hydrogen peroxide (H2O2) biosensor was developed by immobilizing hemoglobin on the gold colloid modified electrochemical pretreated glassy carbon electrode (PGCE) via the bridging of an ethylenediamine monolayer. This biosensor was characterized by UV-vis reflection spectroscopy (UV-vis), electrochemical impendence spectroscopy (EIS) and cyclic voltammetry (CV). The immobilized Hb exhibited excellent electrocatalytic activity for hydrogen peroxide. The Michaelis–Menten constant (K m) was 3.6 mM. The currents were proportional to the H2O2 concentration from 2.6 × 10−7 to 7.0 × 10−3 M, and the detection limit was as low as 1.0 × 10−7 M (S/N = 3).  相似文献   

16.
Ammonium sulphate cut protein extracts, and their pepsin hydrolysates, from the rhizomes of 15 plants in the Zingiberaceae family were screened for their in vitro angiotensin I-converting enzyme inhibitory (ACEI) activity. The protein extract from Zingiber ottensii had the highest ACEI activity (IC50 of 7.30 × 10−7 mg protein/mL) and was enriched for by SP Sepharose chromatography with five NaCl step gradients 0, 0.25, 0.50, 0.75 and 1 M NaCl collecting the corresponding five fractions. The highest ACEI activity was found in the F75 fraction, which appeared to contain a single 20.7-kDa protein, suggesting enrichment to or near to homogeneity. The ACEI activity of the F75 fraction was moderately thermostable (−20–60 °C), showed >80% activity across a broad pH range of 4–12 (optimal at pH 4–5) and appeared as a competitive inhibitor of ACE (K i of 9.1 × 10−5 mg protein/mL). For the pepsin hydrolysates, that from Zingiber cassumunar revealed the highest ACEI activity (IC50 of 0.38 ± 0.012 mg/mL), was enriched to a single active hexapeptide by RP-HPLC with a strong ACEI activity (IC50 of 0.011 ± 0.012 mg/mL) and acted as a competitive inhibitor of ACE (K i of 1.25 × 10−6 mg protein/mL).  相似文献   

17.
A simple method was used to fabricate flavin adenine dinucleotide (FAD)/NiOx nanocomposite on the surface of glassy carbon (GC) electrode. Cyclic voltammetry technique was applied for deposition nickel oxide nanostructures onto GC surface. Owing to its high biocompatibility and large surface area of nickel oxide nanomaterials with immersing the GC/NiOx-modified electrode into FAD solution for a short period of time, 10–140 s, a stable thin layer of the FAD molecules immobilized onto electrode surface. The FAD/NiOx films exhibited a pair of well-defined, stable, and nearly reversible CV peaks at wide pH range (2–10). The formal potential of adsorbed FAD onto nickel oxide nanoparticles film, E o′ vs. Ag/AgCl reference electrode is −0.44 V in pH 7 buffer solutions was similar to dissolved FAD and changed linearly with a slope of 58.6 mV/pH in the pH range 2–10. The surface coverage and heterogeneous electron transfer rate constant (k s ) of FAD immobilized on NiOx film glassy carbon electrode are 4.66 × 10−11 mol cm−2 and 63 ± 0.1 s−1, indicating the high loading ability of the nickel oxide nanoparticles and great facilitation of the electron transfer between FAD and nickel oxide nanoparticles. FAD/NiOx nanocomposite-modified GC electrode shows excellent electrocatalytic activity toward S2O82− reduction at reduced overpotential. Furthermore, rotated modified electrode illustrates good analytical performance for amperometric detection of S2O82−. Under optimized condition, the concentration calibration range, detection limit, and sensitivity were 3 μM–1.5 mM, 0.38 μM and 16.6 nA/μM, respectively.  相似文献   

18.
The electrocatalytic oxidation of glutathione (GSH) has been studied at the surface of ferrocene-modified carbon paste electrode (FMCPE). Cyclic voltammetry (CV), double potential step chronoamperometry, and differential pulse voltammetry (DPV) techniques were used to investigate the suitability of incorporation of ferrocene into FMCPE as a mediator for the electrocatalytic oxidation of GSH in buffered aqueous solution. Results showed that pH 7.00 is the most suitable for this purpose. In the optimum condition (pH 7.00), the electrocatalytic ability of about 480 mV can be found and the heterogeneous rate constant of catalytic reaction was calculated as . Also, the diffusion coefficient of glutathione, D, was found to be 3.61 × 10–5 cm2 s−1. The electrocatalytic oxidation peak current of glutathione at the surface of this modified electrode was linearly dependent on the GSH concentration and the linear analytical curves were obtained in the ranges of 3.2 × 10–5 M–1.6 × 10–3 M and 2.2 × 10–6 M–3.5 × 10–3 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.8 × 10–5 M and 2.1 × 10–6 M using CV and DPV, respectively. Finally, the electrocatalytic oxidation of GSH at the surface of this modified electrode can be employed as a new method for the voltammetric determination of glutathione in real samples such as human plasma.  相似文献   

19.
A trazodone-selective electrode for application in pharmaceutical quality control and urine analysis was developed. The electrode is based on incorporation of a trazodone-tetraphenylborate ion exchanger in a poly(vinyl chloride) membrane. The electrode showed a fast, stable and Nernstian response over a wide trazodone concentration range (5 × 10−5−1 × 10−2 M) with a mean slope of 59.3 ± 0.9 mV/dec of concentration, a mean detection limit of 1.8 × 10−5 ± 2.2 × 10−6 M, a wide working pH range (5–7.5) and a fast response time (less than 20 s). The electrode also showed good accuracy, repeatability, reproducibility and selectivity with respect to some inorganic and organic compounds, including the main trazodone metabolite. The electrode provided good analytical results in the determination of trazodone in pharmaceuticals and spiked urine samples; no extraction steps were necessary. Dissolution testing of trazodone tablets, in different conditions of pH and particle size, based on a direct potentiometric determination with the new selective electrode is presented as well.  相似文献   

20.
A newly designed glass-PDMS microchip-based sensor for use in the determination of Ca2+ ions has been developed, utilizing reflectance measurements from arsenazo III (1,8-dihydroxynaphthalene-3,6-disulfonic acid-2,7-bis[(azo-2)-phenyl arsenic acid]) immobilized on the surface of polymer beads. The beads, produced from cross-linked poly(p-chloromethylstyrene) (PCMS), were covalently modified with polyethylenimine (PEI) to which the Arsenazo III could be adsorbed. The maximum amount of Arsenazo III which could be immobilized onto the PEI-attached PCMS beads was found to be 373.71 mg g−1 polymer at pH 1. Once fabricated, the beads were utilized at the detection point of the microfluidic sensor device with a fiber optic assembly for reflectance measurements. Samples were mobilized past the detection point in the sensor where they interact with the immobilized dye. The sensor could be regenerated and re-used by rinsing with HCl solution. The pH, voltage, linear range, and the effect of interfering ions were evaluated for Ca2+ determination using this microchip sensor. At the optimum potential, 0.8 kV, and pH 9.0, the linear range of the microchip sensor was 3.57 × 10−5 – 5.71 × 10−4 M Ca2+, with a limit of detection (LOD) of 2.68 × 10−5 M. The microchip biosensor was then applied for clinical analysis of calcium ions in serum with good results. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号