首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The copolymerization of vinyl acetate with methyl acrylate in the presence of Et2AlCl, Et1.5AlCl1.5, and Et2AlCl-benzoyl peroxide systems has been investigated. The influence of monomer ratios and organoaluminium compound concentration on the copolymer yield and composition have been determined and discussed. The monomer sequences distribution has been studied by means of 13C-NMR. It was found that organoaluminium compounds in the studied systems catalyze not only the alternating copolymerization, but also the homopropagation of both monomers. An alternating copolymer was obtained in reactions carried out at ?78°C, when a large excess of vinyl acetate was used in the monomer feed.  相似文献   

2.
The alternating copolymerization of 1- and 2-vinylnaphthalene (1-VNap and 2-VNap) with methyl methacrylate (MMA) by using diethylaluminum chloride (Et2AlCl) in toluene at 0°C has been studied. No polymerization could occur without Et2AlCl, and alternating copolymers were obtained only when an equimolar amount of Et2AlCl with MMA was supplied. Through 1H-NMR analyses on both dyad and triad of alternating deuterated 1- and 2-α-d-VNap–MMA copolymers, each configuration could be described successfully by a single parameter, coisotacticity σ, whose value was estimated as 0.41 for the former and 0.56 for the latter copolymer, respectively. A rather low coisotacticity of copoly(1-VNap–MMA) was explained in the terms of steric effect (peri effect) of 1-VNap monomer.  相似文献   

3.
Alternating copolymerizations of butadiene with propylene and other olefins were investigated by using VO(acac)2–Et3Al–Et2AlCl system as catalyst. Butadiene–propylene copolymer with high degree of alternation was prepared with a monomer feed ratio (propylene/butadiene) of 4. Alternating copolymers of butadiene and other terminal olefins such as butene-1, pentene-1, dodecene-1, and octadiene-1,7 were also obtained. However, the butadiene–butene-2 copolymerization did not yield an alternating copolymer but a trans-1,4-polybutadiene.  相似文献   

4.
The catalysts for alternating copolymerization of butadiene and propylene were investigated by means of ESR technique and potentiometric titration. It was found that several kinds of active species for the production of alternating copolymer, 1,2-polybutadiene, and trans-1,4-polybutadiene are formed, depending upon the catalyst composition of VO(acac)2? Et3Al? Et2AlCl. ESR and potential titration studies suggest that the active species for alternating copolymerization is a divalent vanadium compound existing in an associated form.  相似文献   

5.
The feasibility of the radical copolymerization of β‐pinene and acrylonitrile was clarified for the first time. The monomer reactivity ratios evaluated by the Fineman–Ross method were rβ‐pinene = 0 and racrylonitrile = 0.66 in dichloroethane at 60 °C with AIBN, which indicated that the copolymerization was a simple alternating copolymerization. The addition of the Lewis acid Et2AlCl increased the copolymerization rate and enhanced the incorporation of β‐pinene. The first example for the synthesis of an almost perfectly alternating copolymer of β‐pinene and acrylonitrile was achieved in the presence of Et2AlCl. Furthermore, the possible controlled copolymerization of β‐pinene and acrylonitrile was then attempted via the reversible addition–fragmentation transfer (RAFT) technique. At a low β‐pinene/acrylonitrile feed ratio of 10/90 or 25/75, the copolymerization with 2‐cyanopropyl‐2‐yl dithiobenzoate as the transfer agent displayed the typical features of living polymerization. However, the living character could be observed only within certain monomer conversions. At higher monomer conversions, the copolymerizations deviated from the living behavior, probably because of the competitive degradative chain transfer of β‐pinene. The β‐pinene/acrylonitrile copolymers with a high alternation degree and controlled molecular weight were also obtained by the combination of the RAFT agent cumyl dithiobenzoate and Lewis acid Et2AlCl. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2376–2387, 2006  相似文献   

6.
Abstract

The copolymerization of chloroprene with methyl methacrylate was studied in the presence of Etn A1C13-n (n=1, 1.5, 2)-vanadium compounds. Monomer reactivity ratios in various catalyst concentrations were compared with that of a usual radical initiator. The apparent monomer reactivity ratio changed with the concentration of alkylaluminum halide. In this polymerization, alternating copolymer could not be prepared by the ordinary catalyst concentration by which the alternating copolymerization of chloroprene with acrylonitrile was carried out. The addition of more than 10 mole % of the alkylaluminum halide based on two monomers was required to prepare the copolymer which had equimolar composition irrespective of the feed monomer ratio.

The configuration in the repeating unit of the copolymer was discussed by comparison with the NMR and IR spectra of the radical copolymer and the cyclic Diels-Alder adduct of chloroprene-methyl methacrylate. The high alternating tendency was clarified by ozonolysis of the copolymer which was prepared under the conditions which produced equimolar copolymer in various feed monomer ratios. The chloroprene unit of the copolymer was present in the 1, 4-trans structure in the copolymer prepared by the Etn A1C13-n -vanadium compound system.  相似文献   

7.
The alternating copolymerization of carbon dioxide (CO2) and cyclohexene oxide (CHO) with an aluminum Schiff base complex in conjunction with an appropriate additive as a novel initiator is demonstrated. A typical example is the copolymerization of CO2 and CHO with the (Salophen)AlMe ( 1a )–tetraethylammonium acetate (Et4NOAc) system. When a mixture of the 1a –Et4NOAc system and CHO was pressurized by CO2 (50 atm) at 80 °C in CH2Cl2, the copolymerization of CO2 and CHO took place smoothly and produced a high polymer yield in 24 h. From the IR and NMR spectra, the product was characterized to be a copolymer of CO2 and CHO with an almost perfect alternating structure. The matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry analysis indicated that an unfavorable reaction between Et4NOAc and CH2Cl2 and a possible chain‐transfer reaction with concomitant water occurred, and this resulted in the bimodal distribution of the obtained copolymer. With carefully predried reagents and apparatus, the alternating copolymerization in toluene gave a copolymer with a unimodal and narrower molecular weight distribution. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4172–4186, 2005  相似文献   

8.
Copolymerization of vinyl cyclohexane and α-methyl vinyl cyclohexane with acrylonitrile in the presence of a complexing agent AlEtCl2 results in the formation of alternate copolymers. In the copolymerization of vinyl cyclohexane with acrylonitrile the copolymer composition depends on the ratio of acrylonitrile to AlEtCl2. If this ratio is unity, alternating copolymers of the composition 1:1 are formed; with a ratio greater than unity statistical copolymers that contain more than 50% acrylonitrile units are produced. The 1H-NMR spectroscopy measurements indicate that the interaction between the comonomers and the complexing agent leads to the formation of ternary donor–acceptor complexes of equimolar composition. The equilibrium constants of these complexes at ?60°C have been determined. The effects of temperature, nature of solvent and dilution on the yield, and composition of the copolymers of vinyl cyclohexane with acrylonitrile formed have been studied. By lowering the temperature the yield of copolymers increases but their composition remains equimolar. An increase in the polarity of the medium results in an increase in copolymer yield, whereas the yield decreases if the reaction is conducted in a donor-solvent medium. Dilution of the reaction mixture disrupts the alternation of units in the macrochain of copolymers. The kinetic pecularities of copolymerization have been investigated. The linear dependence of the copolymerization rate on the product of comonomer concentration is observed. The rate of copolymerization is proportional to the square root of the incident light intensity. Various additions of radical type and irradiation accelerate the process of copolymerization. The mechanism of alternating copolymerization of vinyl cyclohexane monomers with acrylonitrile in the presence of AlEtCl2 is discussed in terms of homopolymerization of the comonomer complex.  相似文献   

9.
The syntheses of N-2-phenylallylacrylamide (I) and N-ethyl-2-phenallylacrylamide (II) are described. Both monomers can be polymerized with radical initiators to form cyclopolymers although complete cyclization does not occur. Lewis acids (ZnCl2 in the case of I, Et1.5AlCl1.5 in the case of II) result in the formation of higher molecular weight polymers in a shorter period of time. Polymers of I and II have been hydrolyzed to polyampholytes. The copolymerization of α-methylstyrene–acrylamide in the presence of azobisisobutyronitrile (AIBN) and ZnCl2 leads to the formation of a 1:1 copolymer, whereas styrene–acrylamide under the same conditions give a copolymer slightly dependent upon the monomer feed composition. Attempted cyclopolymerization of N-allylacrylamide (monomer I without the phenyl group) with ZnCl2–AlBN was not successful, only crosslinked polymer being obtained. An explanation is offered for the fact that I does not form a perfect cyclopolymer, although the α-methylstyrene–acrylamide system forms a 1:1 copolymer.  相似文献   

10.

Free radical solution copolymerization of styrene (St) and itaconic acid (IA) in dimethylsulfoxide‐d6 (DMSO‐d6) as the solvent and the use of 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at 78°C was investigated by an on‐line 1H‐NMR spectroscopy technique. Individual monomer conversion vs. reaction time, which was calculated from the 1H‐NMR spectra data, was used to study the drift in monomer mixture composition vs. conversion. It was found that in general, both monomers were incorporated almost equally into the copolymer. However, when the mole fraction of IA was low, the tendency of IA toward incorporation into the copolymer chain was somewhat higher than St and by increasing the mole fraction of IA in the reaction mixture, the inverse tendency was observed. Overall monomer conversion as a function of time was calculated from individual monomer conversion data and used for the estimation of kp /kt 0.5 for various monomer mixture compositions. This ratio was decreased with increasing the amount of IA in the initial feed, indicating a decrease in the rate of copolymerization. Changes in the copolymer composition vs. overall monomer conversion were investigated experimentally from the NMR spectra. This was in good agreement with the changes in monomer mixture composition vs. reaction progress. Plotting the copolymer composition vs. initial monomer feed showed tendency of the system toward alternating copolymerization.  相似文献   

11.
A novel SalenCoIII (2,4‐dinitrophenoxy) (Salen = N,N'‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamino) and 1,10‐phenanthroline monohydrate catalyst system was designed and employed for the copolymerization of CO2 and propylene oxide (PO). The perfectly alternating copolymerization of CO2 and PO proceeds effectively under middle temperature and pressure to yield poly(propylene carbonate) with a high yield and a high number average molecular weight of polymer. The structure of polymer was characterized by the IR and NMR measurements. The perfectly alternating copolymer was confirmed. The MALDI‐TOF spectrum insinuates that the copolymerization of CO2 and PO was initiated by H2O. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of the catalytic amount of H2O was investigated with the EtnAlCl3-n-VOCl3 catalyst system on the alternating copolymerization of acrylic monomers with diolefins and styrene. The presence of the catalytic amount of H2O produced an improvement in the yield and in the molecular weight as well as the structure of copolymer with the EtnAlCl3-n-VOCl3 catalyst system. The efficiency of the aluminum components in the EtnAlCl3-n-VOCl3 system appears with AlEt3 and especially with Et1.5AlCl1.5. The catalytic activity was found to depend upon the H2O EtnAlCl3-n molar ratio and was also affected by the order of mixing of the catalyst components and the monomers. Effective catalyst could be prepared when the catalyst components (except VOCl3) were premixed without presence of monomers. The possible catalytic behavior of H2O was discussed.  相似文献   

13.
In the reactions of 1,3-cyclohexadiene(1,3-CHD) with polar vinyl monomers, CH2?C(X)Y (X is -? CN and ? CO2CH3; Y is ? CI, ? H, and ? CH3), the two α-chlorosubstituted monomers underwent rapid spontaneous copolymerization, accompanied by the formation of a small amount of cycloadduct. Both polar monomers also gave predominantly copolymers in the reaction with 1,3-cycloheptadiene(1,3-CHpD) in lower yield. 1,3-Cyclooctadiene (1,3-COD) reacted only with α-chloroacrylonitrile (CAN) to give a copolymer, while only cycloaddition took place in systems involving cyclopentadiene(CPD) as diene. The charge–transfer (CT) complex formation of 1,3-CHD with CAN and methyl α-chloroacrylate(MCA) was confirmed by ultraviolet spectroscopic studies and the equilibrium constants estimated were 0.18 and 0.07 liter/mole, respectively, at 25°C in chloroform as solvent. The activation energies for the copolymerizations of 1,3-CHD with CAN and MCA in benzene were determined to be ca. 6.6 and 9.6 kcal/mole, respectively. In the system composed of 1,3-CHD and CAN, only the copolymerization was affected by solvents used and oxygen. Although addition of ZnCl2 to the system resulted in the acceleration of the both reactions, the variation in the product ratio of copolymer to cycloadduct with ZnCl2 concentration showed a maximum. Based on the results in the present and preceding studies for systems involving 1,3-cyclodienes and acceptor monomers, the relationship between the cycloaddition and the spontaneous copolymerization is discussed.  相似文献   

14.
Three basic conditions for preparation of alternating copolymer with narrow molecular weight distribution were derived from the element kinetic equations of binary radical copolymerization. Using maleimide (MI) and atropie acid (ATA) as model monomer pairs and dioxane as the solvent the alternating copolymer with molecular weight distribution in the range of 1.09--1.20 was prepared successfully by charger transfer complex (CTC) mechanism in the presence of benzoyl peroxide at 85℃. The monomer reactivity ratioes r_1(MI)=0.05±0.01 and r_2(ATA)=0.03±0.02 were measured. The alternating eopolymerization was carried out through formation of a contact-type CTG and then alternating addition of MI and ATA monomers. The molecular weight of the copolymers is nearly independent of the feed ratio in a large range and the polymerization rate dropped with an increase in ATA in feed ratio.  相似文献   

15.
13C NMR spectra of acrylic monomers complexed with a Lewis acid were measured and their electronic structures discussed in relation to their alternating copolymerizability. The β-carbon of acrylonitrile and methacrylonitrile showed a downfield shift due to the complex formation with the Lewis acid, while the α-carbon showed an upfield shift and the nitrile carbon showed no significant shift. The degree of shift of olefinic carbons decreased in the following order: AlCl3 > EtAlCl2 > Et1.5AlCl1.5 > Et2AlCl > SnCl4, EtOAlCl2 > Et(EtO)AlCl, which seems to run parallel to the Lewis acidity and acid strength. On the other hand, the chemical shift of olefinic carbons of methyl acrylate, methyl methacrylate, and olefinic diesters was influenced little by complex formation with Lewis acids, whereas the carbonyl and alkoxyl carbons were deshielded significantly by the complex formation. These results are discussed in terms of electron distribution on the carbons and an alternating polymerization mechanism.  相似文献   

16.
Radical copolymerization of sulfur dioxide and vinyl chloride (VC) has been studied by the comparison of the composition of copolymers obtaining from different reaction conditions, i.e., reaction temperatures, feed compositions, and total monomer concentrations. The composition of VC in copolymer is independent of comonomer composition except at high concentration of VC in feed; it increases with increasing reaction temperature or decreasing total monomer concentration. At lower temperature, the composition of copolymer becomes independent of total monomer concentration. The overall rate of polymerization is proportional to [VC]1,7 and [SO2]0.5. These results were compared with those obtained in our previous study on the SO2-styrene copolymerization. A propagation mechanism for radical copolymerization of SO2 and VC is also proposed.  相似文献   

17.
The copolymerization of 4-hydroxy-4′-vinylbiphenyl (HVB) with α-chloromaleic anhydride (CMAn) was investigated in THF, 1,4-dioxane, and acetonitrile. The formation of the 1:1 charge transfer complex between HVB and CMAn was confirmed spectroscopically, and the corresponding equilibrium constant (Keq) was determined as follows: Keq = 0.19, 0.11, and 0.058 mol/L in THF, 1,4-dioxane, and CH3CN, respectively. The copolymer composition is affected by the solvent, i.e., the content of HVB in the copolymer obtained in THF or 1,4-dioxane is lower than 50 mol % whereas the copolymer obtained in CH3CN has excess of HVB units. The maximum rate of copolymerization was observed at a 1:1 initial comonomer mole ratio, irrespective of the solvent polarity. Plots of Rp/[HVB] vs. [HVB] gave a straight line with a slope and an intercept for the copolymerization in THF whereas a straight line in CH3CN has no slope. On the basis of these results and 13C-NMR spectra of the copolymers, the mechanism of the predominant formation of alternating copolymers is discussed.  相似文献   

18.
The copolymerization of butadiene and propylene was investigated. It was found that the catalyst system of TiCl4–Et3Al–COCl2 yields a random copolymer of high molecular weight with a small amount of gel polymer above room temperature. Tetrachloroethylene was a good solvent for the production of high polymer containing a high proportion of propylene units in high yield. The fractionation and the analysis of degradation experiments of copolymer indicate that the copolymer is of random distribution of propylene units in the copolymer. However, the monomer reactivity ratios, rBD = 6.36 and rPr = 0.42, suggest some degree of blocked character. The properties of the copolymer were superior to those of cis-1,4–polybutadiene, especially in resistance to thermal aging.  相似文献   

19.
Alternating copolymerization of butadiene with several α-olefins and of isoprene with propylene were investigated by using a mixture of VO(Acac)2, Et3Al, and Et2AlCl as catalyst. The alternating copolymerization ability of the olefins decreases in the order, propylene > 1-butene > 4-methyl-1-pentene > 3-methyl-1-butene. The study on the sequence of the copolymer of isoprene with propylene by ozonolysis reveals that the polymer chain is reasonably expressed by the sequence \documentclass{article}\pagestyle{empty}\begin{document}$ \rlap{--} [{\rm CH}_{\rm 2} \hbox{--} {\rm CH} \hbox{=\hskip-1pt=} {\rm C(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \hbox{--} {\rm CH(CH}_{\rm 3}) \hbox{--} {\rm CH}_{\rm 2} \rlap{--}]_n $\end{document}. NMR and infrared spectra indicate that the chain is terminated with propylene unit, forming a structure of ?C(CH3)? CH2? C(CH3)?CH2 involving a vinylene group.  相似文献   

20.
The synthesis of a new glassy-rubbery-glassy triblock copolymer poly(α-methylstyrene-b-isobutylene-b-α-methylstyrene) has been demonstrated. The key to the synthesis was the preparation by inifer method of a perfectly bifunctional polyisobutylene which carries tert-chlorine end groups Cl-PIB-Cl. In conjunction with Et2AlCl coinitiator, the telechelic Cl-PIB-Cl molecule initiates the polymerization of α-methylstyrene at both ends of the prepolymer. Triblock composition can be controlled by the judicious selection of synthesis conditions; that is, Cl-PIB-Cl molecular weight, α-methylstyrene concentration, and solvent polarity. Theoretical triblock M n calculated from M n of Cl-PIB-Cl and triblock overall composition is in excellent agreement with experimental M n which indicates negligible homopolymer contamination. Extraction with a series of hydrocarbon solvents reveals broad composition distribution. The stress-strain profile of a triblock is similar to that of a poly(styrene-b-butadiene-b-styrene) thermoplastic elastomer of similar composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号