首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The surface free energy of silica and its components have been evaluated from imbibition experiments performed with liquids of differing surface properties by the distance–time method. Data were analyzed by a parabolic fit to Washburn's equation, because of the uncertainty in the exact position and time at which penetration begins in these kinds of experiments. In addition to the mathematical treatment of the experimental results, the influence of the components and parameters of the surface tension of the liquids used on the values of the solid surface free-energy components has been analyzed.  相似文献   

2.
3.
Ceramic hollow microspheres (CHMSs) were prepared to use as supports for the removal of heavy metal ions from industrial waste-water. A water extraction sol–gel technique was used to prepare porous CHMS by extracting water from an emulsion of LUDOX (silica colloid; SiO2, Aldrich Co.) and 2-ethyl-1-hexanol. Experiments were conducted to control pore size, wall thickness, and separation yield by examining the ratio of precursors (LUDOX and 2-ethyl-1-hexanol), catalyst (NH4OH), sintering temperature, surfactant (SPAN 80), extractant (n-butanol), stirring speed, and concentration of precursor (LUDOX). The results revealed that the optimum conditions were 20 ml of a 10 wt% solution of LUDOX, 10 ml of NH4OH, a sintering temperature of 500°C, 0.4 ml of SPAN 80, 200 ml of n-butanol, and a stirring speed of 730 rpm/100 ml of 2-ethyl-1-hexanol. CHMSs were impregnated in Cyanex 272 and examined for their ability to remove heavy metal ions from a solution. Based on an experiment involving the removal of metal ions using CHMSs that were prepared under optimum conditions, Zn ion was removed at a level of 0.354 mmol/g at pH 4, which was about twice the adsorption capacity of CHMSs prepared by Wilcox (Mater. Res. Soc. Symp. Proc.346, 201 (1994)).  相似文献   

4.
This paper deals with the effect of different low-molecular-weight poly(ethylene oxide)s on the rheology of concentrated aqueous colloidal silica suspensions (volume fraction >0.2) with the aim of obtaining well-dispersed media. Results are correlated with the physico-chemical characteristics of the systems that govern the ranges of the various operating interactions, i.e., mainly surface coverage, molecular weight of the polymer, and ionic strength of the medium. Optimization of the fluidification occurs to be strongly linked to these parameters. An unexpected effect of free polymer bulk concentration leads to improved fluidification when the characteristic lengths of the system are correctly adjusted; it has been interpreted in the frame of recent theories.  相似文献   

5.
Effect of structural stress on the intercalation rate of kaolinite   总被引:6,自引:0,他引:6  
Particle size in kaolinite intercalation showed an inverse reactivity trend compared with most chemical reactions: finer particles had lower reactivity and some of the fine particles cannot be intercalated. Although this phenomenon was noted in the early 1960s and several hypotheses have been reported, there is no widely accepted theory about the unusual particle size response in the intercalation. We propose that structural stress is a controlling factor in the intercalation and the stress contributes to the higher reactivity of the coarser particles. In this study, we checked the structural deformation spectroscopically and indirectly proved the structural stress hypothesis. A Georgia kaolinite was separated into nine size fractions and their intercalations by hydrazine monohydrate and potassium acetate were investigated with X-ray diffraction (XRD) and Fourier-transform infrared (FTIR) analyses. The apical Si-O band of kaolinite at 1115 cm(-1) shifted to 1124 cm(-1) when the mineral was intercalated to 1.03 nm by hydrazine monohydrate, and its strong pleochroic properties became much weaker. Similar reduction in pleochroism was observed on the surface OH bands of kaolinite after intercalation. Both the bending vibrations of the inner OH group at 914 cm(-1) and of the surface OH group at 937 cm(-1) shifted to 903 cm(-1) after intercalation by hydrazine. A new band for the inner OH group appeared at 3611 cm(-1) during the deintercalation of the 1.03 nm hydrazine kaolinite complex. Pleochroism change in the apical Si-O band suggested the tetrahedra had increased tilt with respect to the (001) plane. The tilt of the Si-O apical bond could occur only if the octahedra had also undergone structural rearrangement during intercalation. These changes in the octahedral and tetrahedral sheets represent some change in the manner of compensation for the structural misfit of the tetrahedral sheet and octahedral sheet. As the lateral dimensions of a kaolinite particle increases, the cumulative degree of misfit increases. Intercalation breaks the hydrogen bonds between layers and allows for the structure to reduce the accumulated stress in some other manner. The reversed size effect on intercalation probably was not caused by crystallinity differences as reported in the literature, because the Hinckley and Lietard crystallinity indices of the four clay fractions were very close to each other. Impurities, such as dickite- or nacrite-like phases are not significant in the studied sample as suggested by the XRD and IR results, they are not the main reasons for the lower reactivity of the finer particles.  相似文献   

6.
The calcium carbonate scale inhibition by two inhibitors, polyacrylic acid (PAA) and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTCA), has been studied in two heat transfer systems: recirculating cooling water and pool boiling systems. It is found that PBTCA has a better inhibition effect than PAA under identical conditions. The inhibition effect increases with increasing fluid velocity for the cooling water system, whereas in the presence of inhibitors, the fluid velocity has less effect on the scaling behavior. When the initial surface temperature increases, the inhibition efficiency decreases. In the presence of inhibitors, the scaling behavior is insensitive to the change of surface temperature. The relationship between the inhibition effect and the fractal dimension has also been investigated. The results show that the fractal dimension is higher in the presence of inhibitors. The better the inhibition effect, the higher the fractal dimension. XRD and FTIR analyses demonstrate that for the CaCO3 formed in the pool boiling system, the content of vaterite increases with the increase of inhibition effects. The metastable crystal forms of vaterite and aragonite are stabilized kinetically in the presence of inhibitors. The step morphology has been observed by atomic force microscopy. It is shown that the step space on the CaCO3 surface increases in the presence of inhibitors. Moreover, with the increase in inhibition effect, both the step space and the fractal dimension increase. Step bunching is also found and discussed in this paper.  相似文献   

7.
Photoinduced electron-transfer reaction of anthracene with N,N-diethylaniline (DEA) was studied in the SDS (sodium dodecyl sulfate)/BA (benzyl alcohol)/H2O system. In an oil/water microemulsion, only the excited anthracene located at the interface can be quenched by DEA. In a water/oil microemulsion, this quenching reaction occurs in the BA continuous phase. Besides being the quencher of the excited anthracene, DEA could also change the system's structure.  相似文献   

8.
Adenine-capped Q-CdS has been synthesized in an aqueous medium. IR spectroscopy indicates an interaction between Q-CdS and adenine through Cd2+. The amount of adenine controls the size of the clusters. A typical 5×10−3 mol dm−3 of adenine produces nanoclusters having the onset of absorption and an emission band at 2.8 and 2.35 eV, respectively. Adenine binds to the shallower traps and enhances the emission intensity of the 530-nm band without causing any shift in emission. Thermolysis of these colloids leads to the production of larger CdS clusters with changed electronic properties. Relaxation kinetics of charge carriers shows their average lifetime to increase with a decrease in particle size. Illumination of these particles does not lead to their photodissolution. This catalyst is, however, photoactive. The addition of indole causes the quenching of its emission. The photocatalytic oxidation of indole produces indigo with a quantum efficiency of 0.03.  相似文献   

9.
The effect of a weak convective heat transfer on the thermocapillary interaction of two bubbles with an arbitrary orientation relative to an externally imposed temperature gradient is examined. Asymptotic analysis of the case of large separation distances, Z, suggests that the corrections to the bubbles' velocities are of (Pe/Z2), rather than (Pe2) previously found for an isolated bubble. Equal-sized bubbles are known to move with the same velocities, as if they were isolated, when heat conduction is the only transport mechanism. However, the convective transport results in a relative motion of the bubbles. The tendency of equal bubbles to line up in a plane perpendicular to the applied thermal gradient is shown analytically in the weakly nonlinear limit of small Pe numbers, and an interesting interaction behavior in the case of unequal bubbles is discussed.  相似文献   

10.
Temperature-programmed desorption was performed at temperatures up to 850 K on as-received fumed and precipitated silica particles. Physisorbed water molecules on both types of silica had activation energies in the range of 38–61 kJ/mol. However, the activation energies of desorption for chemisorbed water varied from 80 to >247 kJ/mol for fumed silica, Cab-O-Sil-M-7D, and 96 to 155 kJ/mol for precipitated silica, Hi-Sil-233. Our results suggest that physisorbed water can be effectively pumped away at room temperature (or preferably at 320 K) in a matter of hours. Chemisorbed water with high activation energies of desorption (>126 kJ/mol) will not escape silica surfaces in 100 years even at 320 K, while a significant amount of the chemisorbed water with medium activation energies (80–109 kJ/mol) will leave the silica surfaces in that time span. Most of the chemisorbed water with activation energies <126 kJ/mol can be pumped away in a matter of days in a good vacuum environment at 500 K. We had previously measured about 0.1–0.4 wt% of water in silica-reinforced polysiloxane formulations containing 21% Cab-O-Sil-M-7D and 4% Hi-Sil-233. Comparing present results with these formulations, we conclude that the adsorbed H2O and the Si–OH bonds on the silica surfaces are the major contributors to water outgassing from these types of silica-filled polymers.  相似文献   

11.
The JKR method has been applied for studying adhesion between poly(dimethylsiloxane) (PDMS) caps and Langmuir–Blodgett cellulose surfaces including the substrate, hydrophobized mica, and two flat mineral surfaces, bare mica and glass. The self-adhesion of PDMS caps and oxidized PDMS caps are included as a reference to compare with literature data. The results of the measurements have been compared with previous studies using the surface force apparatus and similar systems. A satisfactory agreement is obtained for simple systems showing no, or very limited, hysteresis between loading and unloading curves. In several cases, however, a large hysteresis is found between loading and unloading curves, with a larger adhesion measured from the pull-off force than from the JKR-curve determined on loading. This is, for instance, the case for PDMS against cellulose. The situation is analogous to that found in wetting studies showing a large hysteresis between advancing and receding contact angles.  相似文献   

12.
Polyacrylonitrile (PAN)-based activated carbon fibers (ACFs) prepared by various activation methods were characterized using low-temperature nitrogen adsorption over a wide relative pressure from 10−6 to 1. Nitrogen adsorption is a standard tool for determination of porous structure parameters. In the present work, we carried out extensive adsorption studies of a series of PAN-ACFs activated by different methods. It was shown that the high-resolution αS plot provided valuable information about structural properties of samples under study. The pore size distributions of samples under study were calculated by employing the regularization method according to density functional theory. By these analyses, the pore development and the dominant pores of samples prepared by different methods can be clearly observed. Moreover, the adsorption measurement could provide profound insight into the structural heterogeneity of the ACFs.  相似文献   

13.
The exchange of the original cation present on a Laponite clay (usually Na+) for heavy atoms such as Rb+, Cs+, and Tl+ significantly alters the emission characteristics of some aromatic hydrocarbons (p-terphenyl, naphthalene, pyrene, and biphenyl). The increase of the atomic mass of the cation induces a decrease of the fluorescence emission simultaneous with an increase of the emission in the region of lower energies of the spectra, ascribed to the phosphorescence of those hydrocarbons. Time-resolved experiments for the pyrene–clay system showed a decrease of singlet lifetimes for the heavier atoms. Hydrocarbon aggregates were also detected from both the emission spectra and the time-resolved studies. The “excimer-like” emission showed longer lifetimes (10–25 ns) than the monomolecular hydrocarbons (1–3 ns), as already found for other similar systems. The amount of aggregates increased for the heavier cations due to the smaller surface available on the clay particles. Experiments increasing the amount of Tl+ in samples containing a constant concentration of naphthalene allowed evaluation of the distance between the heavy atoms and the probe on the clay surface. The Perrin model treatment was used and resulted in approximately R0=9.2 Å.  相似文献   

14.
In environmental engineering, adsorption and desorption are phenomena commonly referred to as responsible for pollution dispersion, retention, or retardation in soils, aquifers, and hydrologic systems. They are also used to remove organic pollutants from water or odorous compounds in gas deodorization. Most often, the characterization of the aqueous adsorption systems that are of engineering interest involves a narrow adsorbate concentration range and low values of the adsorbate concentration. The practice is to use the Freundlich equation that best fits most data and is considered sufficient to design adsorption contactors. However, no physical or chemical meaning can be associated with the values taken by the parameters. The present paper gives a new way of analyzing adsorption data, using an extension of the Freundlich equation and the Gaussian distribution function that makes it possible to associate parameter values of this extension with the adsorbate–adsorbent normal interaction energy, its heterogeneity, and to some extent the adsorbate–adsorbate lateral interaction energy.  相似文献   

15.
Alternating adsorption of multivalent ions and oppositely charged polyelectrolytes on colloid particles has been investigated. Multilayer films composed of Tb3+/polysterene sulfonate (PSS) and 4-pyrene sulfate/polyallylamine (PAH) were successfully assembled on polysterene sulfonate (PS) and melamine formaldehyde (MF) latex particles. The amount of assembled material was estimated by fluorescence and the linear growth of the film versus the number of layers was demonstrated. These multilayers are not stable and can be decomposed by salt and temperature. Dissolution of MF particles leads to formation of hollow capsules consisting of multivalent ion/polyelectrolyte multilayers. Comparative analysis of the capsules was done by confocal and scanning force microscopy. Complex hollow spheres consisting of Tb3+/PSS or 4-PS/PAH as an inner shell and stable PSS/PAH as an outer shell were produced. Due to selective permeability of the outer shell after degradation of the inner shell the multivalent ions are released out of the capsule while the polyelectrolytes fill the capsule interior. This is indicative of swelling of the capsule by osmotic pressure. The filled capsules were studied by confocal and scanning electron microscopy. Possibilities of encapsulating macromolecules in defined amounts per capsule are discussed.  相似文献   

16.
Adsorbents synthesized by grafting of titania onto mesoporous silica gel surfaces at different temperatures were studied by means of nitrogen adsorption–desorption and water desorption. The pore size distribution f(Rp) of titania/silica gel depends on the titania concentration (CTiO2) and the temperature of titania synthesis. Nonuniformity of TiO2 phase is maximal at a low CTiO2 value (3.2 wt.% anatase deposited at 473 K), and two peaks of the fractal dimension distribution f(D) are observed at such a concentration of titania, but at larger CTiO2 values, only one f(D) peak is seen. More ordered filling of pores and adsorption sites by nitrogen, reflecting in the shape of adsorption energy distributions f(E) at different pressures of adsorbate, is observed for adsorbent with titania (rutile+anatase) grafted on silica gel at a higher temperature (673 K).  相似文献   

17.
18.
Pseudo-first-order rate constants (kobs) for alkaline hydrolysis of 4-nitrophthalimide show a monotonic decrease with increase in [C12E23]T (total concentration of Brij 35) at constant [CH3CN] and [NaOH]. This micellar effect is explained in terms of a pseudophase micelle model. The rate of hydrolysis becomes too slow to monitor at [C12E23]T≥0.03 M in the absence of cetyltrimethylammonium bromide (CTABr) and at [C12E23]T≥0.04 M in the presence of 0.006–0.02 M CTABr at 0.01 M NaOH. The plots of kobs versus [C12E23]T show minima at 0.006 and 0.01 M CTABr, while such a minimum is not visible at 0.02 M CTABr.  相似文献   

19.
The system tetraethoxysilane(TEOS)–water–ethanol has been studied by rheological measurements. Different molar ratios of TEOS : water (1 : 4, 1 : 10, and 1 : 20) are studied at different temperatures (30, 40, and 50°C). The dynamic viscosity (rotating mode) at a constant shear rate (100 s−1) and the elastic and viscous moduli (oscillating mode) at a constant frequency (1 Hz) are determined. The viscosity–time curves are evaluated by application of a nucleation and particle growth model. Good agreement between experiments and theory is observed. The model allows the determination of the complex rate constant of silica precipitation. The temperature-dependent measurements gave the possibility to determine the apparent energy of activation by common methods. The results are in agreement with data from the literature. The gel time defined as intersection point of elastic and plastic moduli and its dependence on temperature are evaluated by the Smoluchowski model. The energy of activation for the coagulation was determined and found to be in the correct order of magnitude.  相似文献   

20.
The adsorption behavior of 1,4-benzenedithiol (1,4-BDT) on colloidal gold and silver surfaces has been investigated by means of surface-enhanced Raman scattering (SERS). 1,4-BDT chemisorbed dissociatively on both gold and silver surfaces but as mono- and dithiolate, respectively. Regardless of the bulk concentration of 1,4-BDT, only a monolayer was assembled on the silver surface with a flat orientation by forming two Ag–S bonds. On the gold surface, the monothiolate species,1,4-BDT−1, appeared to assume a rather flat orientation at a very low surface coverage, but as the surface coverage was increased, the adsorbate took a perpendicular orientation. Furthermore, when the bulk concentration of 1,4-BDT was close to that required for a full-monolayer coverage limit, a band assignable to the S–S stretching vibration appeared at 536 cm−1 in the gold sol SERS spectra. A separate ellipsometry measurement performed with vacuum-evaporated gold substrates revealed that up to tetralayers could be assembled on gold in 1 mM n-hexane solution of 1,4-BDT while at best a bilayer formed in either methanol or ethanol solution. The different adsorbate structure of 1,4-BDT on gold and silver was overall quite comparable to that of p-xylene-α,α′-dithiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号