首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A. M. Shaikh 《Pramana》2008,71(4):663-672
Design and development of neutron detectors and R&D work in neutron radiography (NR) for non-destructive evaluation are important parts of the neutron beam and allied research programme of Solid State Physics Division (SSPD) of Bhabha Atomic Research Centre (BARC). The detectors fabricated in the division not only meet the in-house requirement of neutron spectrometers but also the need of other divisions in BARC, Department of Atomic Energy units and some universities and research institutes in India and abroad for a variety of applications. The NR facility set up by SSPD at Apsara reactor has been used for a variety of applications in nuclear, aerospace, defense and metallurgical industries. The work done in the development of neutron detectors and neutron radiography is reported in this article.   相似文献   

2.
Inelastic neutron scattering experiments to determine phonon density of states of coherent scattering samples of polycrystalline complex solids are generally intensity-limited and therefore are feasible only at high flux facilities. Phonon density of states of the monoclinic phase of tetracyanoethylene at 300 K, obtained using the medium resolution triple axis spectrometer at the new Indian medium flux reactor Dhruva are reported here. The raw data is converted to the “neutron weighted” phonon density of states by applying suitable corrections. Comparison made with results from a theoretical calculation based on a semirigid molecule model of lattice dynamics is fair. Results from Dhruva are also consistent with that obtained (to be published) at the high flux pulsed neutron source (ISIS) of the Rutherford Appleton Laboratory in United Kingdom.  相似文献   

3.
S L Chaplot 《Pramana》2006,67(1):163-171
A national facility for neutron beam research is operated at the research reactor Dhruva at Trombay in India. The research activities involve various nanoscale structural, dynamical and magnetic investigations on materials of scientific interest and technological importance. Thermal neutron has certain special properties that enable, e.g., selective viewing of parts of an organic molecule, hydrogen or water in materials, investigations on minerals and ceramics, and microscopic and mesoscopic characterization of bulk samples. The national facility comprises of eight neutron-scattering spectrometers in the reactor hall, and another four spectrometers in the neutron-guide laboratory. In addition, a neutron radiography facility and a detector development laboratory are located at APSARA reactor. All the instruments including the detectors and electronics have been developed within BARC. A new powder diffractometer (PD-3) is being developed by UGC-DAE-CSR. The national facility is utilized in collaboration with various universities and other institutions.  相似文献   

4.
We report here the quasielastic neutron scattering (QENS) studies on the dynamics of propylene inside Na-Y zeolite using triple axis spectrometer (TAS) at Dhruva reactor, Trombay. Molecular dynamics (MD) simulations performed on the system had shown that the rotational motion involves energy larger than that involved in the translational motion. Therefore, rotational motion was not observed in our earlier QENS studies on propylene adsorbed Na-Y zeolite using a higher resolution spectrometer at Dhruva. Analysis of the TAS spectra revealed that the quasielastic broadening observed in propylene-loaded zeolite spectra is due to the rotational motion of the propylene molecules. This is consistent with our simulation result. Further, the rotational motion is found to be isotropic. The rotational diffusion coefficient has been obtained.   相似文献   

5.
The details of construction and principle of polarized neutron spectrometer at Dhruva reactor, Trombay, for neutron depolarization studies have been described. The feasibility in carrying out neutron depolarization studies in order to know the nature of magnetic ordering in various types of magnetic systems on mesoscopic length scale has been shown.  相似文献   

6.
A personal computer (PC)-based data acquisition and instrument control system has been developed for neutron spectrometers in Dhruva reactor hall and Guide Tube laboratory. Efforts have been made to make the system versatile so that it can be used for controlling various neutron spectrometers using single end-on detector in step scan mode. Commercially available PC add-on cards have been used for input-output and timer-counter operations. An interface card and DC motor driver card have been developed indigenously. Software for the system has been written in Visual C++ language using MS Windows operating system. This data acquisition and instrument control system is successfully controlling four spectrometers at Dhruva reactor.  相似文献   

7.
At Trombay, lattice dynamics studies employing coherent inelastic neutron scattering (INS) experiments have been carried out at the two research reactors, CIRUS and Dhruva. While the early work at CIRUS involved many elemental solids and ionic molecular solids, recent experiments at Dhruva have focussed on certain superconductors (cuprates and intermetallics), geophysically important minerals (Al2SiO5, ZrSiO4, MnCO3) and layered halides (BaFCl, ZnCl2). In most of the studies, theoretical modelling of lattice dynamics has played a significant role in the interpretation and analysis of the results from experiments. This talk summarises the developments and current activities in the field of inelastic neutron scattering and lattice dynamics at Trombay.  相似文献   

8.
K. R. Rao 《Pramana》2004,63(1):5-14
In this talk, the growth of neutron beam research (NBR) in India over the past five decades is traced beginning with research at Apsara. A range of problems in condensed matter physics could be studied at CIRUS, followed by sophisticated indegenous instrumentation and research at Dhruva. The talk ends with an overview of current scenario of NBR world-wide and future of Indian activities.  相似文献   

9.
I. Tanaka 《Pramana》2004,63(1):99-106
Neutron diffraction provides an experimental method of directly locating hydrogen atoms in proteins. After developing an original neutron detector (neutron imaging plate) and a novel practical neutron monochromator (elastically bent perfect Si monochromator), BIX-type diffractometers which were equipped with these tools were efficiently constructed at JRR-3 in Japan Atomic Energy Research Institute (JAERI), Japan and they have finished many protein crystallographic measurements and interesting results have come one after another. At the same time a method of growing large protein single crystals and a database of hydrogen and hydration have also been developed. In the near future, a pulsed neutron diffractometer for biological macromolecules has been proposed at J-PARC in JAERI.  相似文献   

10.
In this paper we report the results obtained from inelastic neutron scattering measurements on Zr2NiH1.9 and Zr2NiH4.6 using triple-axis spectrometer at Dhruva reactor, Trombay. The spectrum up to 35 meV represents largely the lattice modes of Zr and Ni atoms. The vibrational frequencies of hydrogen atoms are expected predominantly at higher energies. The phonon spectra from 35–180 meV were recorded using a Be filter as analyser. In order to analyse the observed neutron spectra, we assume a set of Ein-stein modes due to the hydrogen atoms which are delta functions in energy. These delta functions are broadened by the resolution of the instrument. The vibrational frequencies obtained from the fitting of the observed phonon spectra have been assigned to various tetrahedral sites in both the compounds.  相似文献   

11.
We report here measurements of the phonon density of states and the lattice dynamics calculations of strontium tungstate (SrWO4). At ambient conditions this compound crystallizes to a body-centred tetragonal unit cell (space group I41/a) called scheelite structure. We have developed transferable interatomic potentials to study the lattice dynamics of this class of compounds. The model parameters have been fitted with respect to the experimentally available Raman and infra-red frequencies and the equilibrium unit cell parameters. Inelastic neutron scattering measurements have been carried out in the triple-axis spectrometer at Dhruva reactor. The measured phonon density of states is in good agreement with the theoretical calculations, thus validating the interatomic potential developed.   相似文献   

12.
Inelastic neutron scattering experiments have been carried out to measure the phonon density of states in polycrystalline α-ZnCl2 at Dhruva, Trombay. Lattice dynamical calculations, based on an interatomic potential model, are accomplished to study phonons associated with this otherwise extremely hygroscopic compound. Our calculated data are found to be well-compatible with the available measured ones.  相似文献   

13.
Polarized neutron reflectometry (PNR) is an ideal non-destructive tool for chemical and magnetic characterization of thin films and multilayers. We have installed a position sensitive detector-based polarized neutron reflectometer at Dhruva reactor, Trombay. In this paper we will discuss the results obtained from this instrument for two multilayer samples. The first sample is a (Ni-Mo alloy)/Ti multilayer sample. We have determined the chemical structure of this multilayer by unpolarized neutron reflectometry (NR). The other sample is a Fe/Ge multilayer sample for which we obtained the chemical structure by NR and magnetic moment per Fe atom by PNR.  相似文献   

14.
Yasuhiko Fujii 《Pramana》2008,71(4):617-622
The co-location of reactor- and accelerator-based neutron sources offers a great opportunity for complementary use of steady and pulsed neutron beams in a wide variety of neutron science and technology areas ranging from basic research to industrial applications. In Japan, such a balance of two kinds of neutron sources has a long tradition and now we are entering into a new era with the commissioning of the world’s most intense pulsed neutron beams at JSNS/J-PARC plus the existing JRR-3 reactor both co-located within 1 km of each other in Tokai. The joint operation of these neutron facilities in close proximity under a program called ‘neutron platform’, will allow neutron beam access not only to professional users, familiar with both pulsed and steady state techniques but also to first-time academics and industrial researchers to neutron scattering.   相似文献   

15.
We have developed a thermal neutron calibration method using a reactor produced neutron beam in JRR-3M of the Japan Atomic Energy Agency. Neutron-induced prompt gamma ray analysis has usually been performed in this beam line. Neutron energy distributions with negligible contributions from epithermal neutrons were measured by a time-of-flight method with a chopper made of 6LiF powder. The thermal neutron flux was determined by a gold foil activation method. We found that the thermal neutron beam in JRR-3M was well suited for calibration, neutron detector development or neutron dosimetry.  相似文献   

16.
NaNbO3 and (Sr,Ca)TiO3 exhibit an unusual complex sequence of temperature- and pressure-driven structural phase transitions. We have carried out lattice dynamical studies to understand the phonon modes responsible for these phase transitions. Inelastic neutron scattering measurements using powder samples were carried out at the Dhruva reactor, which provide the phonon density of states. Lattice dynamical models have been developed for SrTiO3 and CaTiO3 which have been fruitfully employed to study the phonon spectra and vibrational properties of the solid solution (Sr,Ca)TiO3.   相似文献   

17.
先进核能系统结构材料辐照性能研究   总被引:2,自引:0,他引:2  
首先简要介绍第一代到先进的第四代核能系统的发展、与核能系统发展密切的抗辐照结构材料研发进展、第四代核能系统结构材料辐照性能研究新方法。第四代核能系统发展中,辐照引起材料性能退化是一个需要研究和解决的瓶颈问题。现有中子源都不能满足第四代核能系统结构材料高剂量中子辐照性能研究的要求。为此,发展了用于核能系统结构材料高剂量辐照性能快速检测加速器重离子辐照方法和第四代核能系统实际辐照工况模拟的重离子与氢和氦三束同时辐照新方法,文中进行了详细的介绍。最后介绍了中国原子能科学研究院核能系统结构材料辐照性能研究现状和近期发展计划。该院在HI-13串列加速器器上建立了多种不同用途的重离子辐照装置、三个独立加速器构成的重离子与氢和氦三束同时辐照实验平台,开展了一系列核能结构材料,例如国产改进型奥氏体钢、CLAM钢、1515钢、钽、钨等的辐照性能的系统测试和研究。为了更好地开展核能结构材料性能研究,从国外引进了一台超导直线加速器和一台可变能量重离子回旋加速器。结合现有2×13 MeV,2×1.7 MV串列加速器、30 MeV和100 MeV质子回旋加速器、高压倍加器,中国实验快堆、中国先进研究堆、微堆等,CIAE将建成一个比较完整和先进的核能系统结构材料辐照实验平台系统供国内外用户使用。This paper introduces briefly the development of nuclear energy systems from the GEN I to the advanced GEN IV, the progress of manufacturing radiation resistant materials associated with the development of nuclear energy systems and the new methods of investigating radiation properties of the structural materials for the GEN IV nuclear energy systems at first. Irradiation induced deterioration of materials properties is a bottle neck problem, which must be investigated and solved for the development of the GEN IV nuclear energy systems. Unfortunately, all the currently available neutron sources cannot meet the requirements of investigating radiation properties of structural materials irradiated by high dose neutron irradiation in the GEN IV nuclear energy systems. Therefore, two new methods of the accelerator heavy ion irradiation that simulates the high-dose neutron irradiation and the triple beam irradiation that mimics the real neutron irradiation environment in the GEN IV nuclear energy systems have been developed. These two methods are introduced in this paper. The present status of the study on radiation properties of structural materials for nuclear energy systems of the new generation and the near future development plan at China Institute of Atomic Energy (CIAE) are described also. The accelerator heavy ion irradiation facilities for different applications and the simultaneous triple beam irradiation platform with three separate accelerators or implanters have been established at the HI-13 tandem accelerator of CIAE. A series of structural materials for nuclear energy systems, such as the home-made modified austenic steel, CLAM steel, 1515 steel, Tantalum, Tungsten, etc. have been tested and investigated systematically. A superconducting linear accelerator and a variable energy heavy ion cyclotron have been imported from abroad for a better performance of the study. Combined with the currently existing facilities of 2×13 MeV and 2×1.7 MV tandem accelerators, 30 and 100 MeV proton cyclotrons, China experimental fast reactor, China advance research reactor, Miniature neutron source reactor, etc. a comprehensive and advanced system of experimental irradiation platform for structural materials of nuclear energy systems will be established in the near future for both domestic and foreign users.  相似文献   

18.
Saibal Basu 《Pramana》2008,71(4):777-784
A polarized neutron reflectometer for vertical samples is available at Dhruva reactor guide hall, Trombay. The reflectometer has been designed for horizontal scattering vector. It uses a position-sensitive detector for obtaining the reflectivity pattern. This arrangement allows one to obtain diffuse or off-specular intensity around any specular peak at one go. We have used this instrument for studying the structure of various metal-metal and metal-semiconductor multilayers by specular reflectometry. We have also been successful in understanding interface morphology of several films through diffuse neutron reflectometry (DNR) on this reflectometer. Some of the recent results are presented in this paper to demonstrate the strength of these two techniques.   相似文献   

19.
Energies of the first 2+, 3 and 4+ states of even-even nuclei are plotted against proton and neutron number. Using this systematics, shell effects and the corresponding quadrupole and hexadecapole collectivity and deformation effects are compared and contrasted. Also, the correspondingB(E2),B(E3) andB(E4) values are plotted against neutron number and their very different systematics compared. Among the new results are the presence of hexadecapole collectivity at the 82 proton and neutron closed shells and the presence of the maximum values ofB(E4) at neutron numbers 10, 90–92 and 140–146. Finally, the systematics of the hexadecapole (K=4+) vibrations is compared with that of the quadrupole (K=2+) gamma vibrations in the quadrupole deformed rare earth region. This research has been supported by the National Sciences and Engineering Research Council of Canada at McMaster University and by the Department of Atomic Energy, Government of India, at Banaras Hindu University.  相似文献   

20.
Position sensitive detectors (PSD) measure the distribution of scattered neutrons and are essential tools for neutron scattering experiments. Various types of neutron detectors used at neutron diffractometers are conventional tube detectors, 1-D and 2-D PSDs. Korea Atomic Energy Research Institute (KAERI) has been developing various kinds of PSDs to improve the instrument performance and to develop new scattering instruments. Our development work is initiated with 1-D PSD for residual stress analysis spectrometer and finally the technology is extended to development of 2-D PSD with planar and curved geometry. All PSDs are based on multiwire grid assembly with delay line readout method for position encoding, as the response is faster than charge division method and enables higher count rate capability. Design details and operational characteristics of some of the PSDs developed, for application at neutron scattering instruments are presented.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号