共查询到20条相似文献,搜索用时 15 毫秒
1.
本文首次将一系列含有不同酸性咪唑阳离子和不同杂多酸阴离子的杂多酸离子液体[C4mim]3PW12O40、[COOH-Cmim] 3PW12O40、[SO3H-C3mim]3PW12O40、[SO3H-C3mim]3PMo12O40和[SO3H-C3mim]4 SiW12O40作为催化剂,乙腈为萃取剂,H2O2为氧化剂,用于催化含二苯并噻吩、苯并噻吩及噻吩模型油的萃取氧化脱硫研究中.实验结果显示,杂多酸离子液体催化燃油脱硫性能不仅与阳离子的酸性强弱有关,而且与阴离子结构密切相关.阳离子的催化活性顺序为:[SO3H-C3mim]+>[COOH-Cmim]+>[C4mim]+;阴离子的催化活性顺序为PW12O403-> PMo12O403-> SiW12O404-.其中[SO3H-C3 mim]3 PW12O40催化活性最高,在60℃反应40min的条件下,二苯并噻吩的转化率约为100%,催化不同硫化物的转化率为:二苯并噻吩>苯并噻吩>噻吩.此外,该杂多酸离子液体循环使用5次催化活性仅略有下降. 相似文献
2.
3.
《化学研究与应用》2017,(3)
研究了以3-辛基-1-甲基咪唑四氟硼酸盐离子液体(C_8mimBF_4)为萃取剂,磷钨酸(H_3PW_(12)O_(40))为催化剂,质量分数为30%的过氧化氢(H_2O_2)为氧化剂,将模拟油中的特征硫化物苯并噻吩(BT)氧化成相应砜类物质的萃取催化氧化脱硫(ECODS)过程。通过正交试验确定其最佳反应条件:反应温度40℃、氧硫摩尔比8:1、H_3PW_(12)O_(40)与硫摩尔比8:100、萃取剂与模拟油体积比1:10、反应时间60min,在此条件下BT模拟油的脱硫率可达95.72%。同时在最佳反应条件下考察了该ECODS体系对其他类型硫化物为底物的模拟油的脱硫性能,实验结果表明几乎可以完全除去二苯并噻吩(DBT)和4,6-二甲基二苯并噻吩(4,6-DMDBT)。由正交试验极差可知,各因素对BT模拟油ECODS影响的优先顺序为:催化剂用量反应时间反应温度氧硫摩尔比剂油比。动力学实验结果表明BT氧化符合拟一级动力学模型,并计算了反应速率常数和半衰期。 相似文献
4.
5.
随着环境法的日益完善,柴油的低硫化成了亟待解决的问题。本文采用浸渍法制备了Cu2+负载型酸化改性Al2O3型催化剂,对市售0#柴油进行了等离子体催化氧化脱硫实验研究,后又用自制的新型离子液体(BMIMDBP)对氧化脱硫后的柴油进行萃取脱硫。实验结果表明:在使用板-板式石英反应器,催化剂质量分数为w(catalyst)=5%,空气流速为200 mL/min,放电时间为15min,离子液体与柴油的体积比为1∶1和萃取5次的条件下,脱硫率可以达到52.1%。本方法的实施为柴油脱硫开辟了一条新的途径。 相似文献
6.
《化学研究与应用》2021,33(10)
通过离子交换法制备以天冬氨酸(Asp)、组氨酸(His)、甘氨酸(Gly)、色氨酸(Try)为阴离子的氨基酸咪唑离子液体,与H_2O_2协同深度去除模拟汽油中的二苯并噻吩(DBT)。对合成的氨基酸咪唑离子液体进行了FT-IR、1H NMR表征,并优化氧化脱硫工艺条件。结果表明,与以组氨酸、甘氨酸和色氨酸作为离子液体的阴离子相比,天冬氨酸作为阴离子时,离子液体与H_2O_2体系的催化萃取脱硫效果最好。通过对反应温度、H_2O_2/模拟油体积比和反应时间的工艺优化,探讨了[C_8mim]Asp和H_2O_2催化萃取脱硫的效果,最优工艺条件下,脱硫率可达96.5%。[C_8mim]Asp离子液体再生循环7次后脱硫率仍能保持在93.7%。对[C_8mim]Asp和H_2O_2协同催化脱硫机理的研究发现,[C_8mim]Asp的羧基与双氧水反应成过氧化羧基,将二苯并噻吩氧化成为二苯并噻吩砜,从而达到脱硫的目的。 相似文献
7.
8.
离子液体萃取脱硫新工艺研究 总被引:36,自引:0,他引:36
探讨了不同离子液体在不同条件下通过萃取降低汽油中硫含量的可能性.结果表明,较长碳链的DMImBF4离子液体具有很好的深度脱硫性能,并且能够重复使用.同时,研究结果还表明离子液体可以同时降低低碳烯烃的含量,而低碳烯烃的存在可以促进离子液体对汽油中硫的萃取. 相似文献
9.
酸性离子液体萃取/催化二苯并噻吩氧化脱硫反应的优化 总被引:4,自引:1,他引:4
ö以Brönsted酸性离子液体N-甲基-2-吡咯烷酮磷酸二氢盐([Hnmp]H2PO4)为萃取剂和催化剂,双氧水为氧化剂,二苯并噻吩(DBT)溶于正辛烷为模型油,利用正交实验法优化了DBT氧化脱硫反应工艺。所优化的反应条件为:反应温度60℃,模型油与离子液体体积比为1∶1,氧/硫摩尔比为16, 氧化时间5h;在此条件下模型油脱硫率达99.8%,实际柴油脱硫率为64.3%。由正交实验极差可知,各因素对DBT脱硫率影响的大小依次为:反应温度>反应时间>氧/硫摩尔比>剂油比;离子液体循环利用6次,脱硫率下降不明显。 相似文献
10.
功能化酸性离子液体催化柴油氧化脱硫的研究 总被引:3,自引:4,他引:3
以功能化酸性离子液体为催化剂,30%双氧水为氧化剂,将加氢柴油中的含硫化合物氧化为相应的砜类物质,并用N-甲基吡咯烷酮(NMP)萃取一次。同时考察了反应温度、反应时间和催化剂用量等因素对氧化脱硫反应的影响,得出最佳反应条件为,3mL油样(硫的质量分数为200×10-6)、1.5g酸性离子液体、 0.3mL H2O2、 25℃,3.5h、VNMP/Vdiesel=1∶1,脱硫率可达到86.7%,柴油硫的质量分数仅为25×10-6左右,反应结束后,可通过简单的倾倒将油样和催化剂分离,重复使用5次,其催化活性变化不大。 相似文献
11.
12.
13.
14.
合成了四种有机-无机型杂多酸催化剂,包括[π-C5H5NC16H33]3[PW4O16],[π-C5H5NC16H33]3[PMo4O16],[π-C5H5NC12H25]3[PW4O16]和[π-C5H5NC12H25]3[PMo4O16]. 以有机硫的正辛烷溶液为模拟油品,H2O2为氧化剂,乙腈为萃取剂,在两相体系中,考察了上述四种催化剂对模拟油品中二苯并噻吩(DBT)氧化脱硫的催化活性. 结果表明,[π-C5H5NC16H33]3[PW4O16]具有最佳的催化活性. 采用[π-C5H5NC16H33]3[PW4O16]进行后续研究发现,反应完毕,[π-C5H5NC16H33]3[PW4O16]以沉淀的形式析出,可以重复利用且脱硫效果很好. 研究表明,上述有机-无机型杂多酸属于相转移催化剂,氧化脱硫反应体系属于反应控制相转移催化体系. 在相同实验条件下,由于电子云密度和空间位阻效应共同的作用,DBT、噻吩(TH)、苯并噻吩(BT)和4,6-二甲基二苯并噻吩(4,6-DMDBT)脱硫由易到难的顺序为DBT >4,6-DMDBT >BT >TH,并分别通过GC-MS分析确定它们的氧化产物. 将[π-C5H5NC16H33]3[PW4O16]进一步应用于柴油氧化脱硫,其中硫含量由355 mg/kg (mg/kg等同于ppmw)降至26 mg/kg,去除率达92.7%. 利用上述四种有机-无机型杂多酸作催化剂,研究DBT氧化反应过程动力学,确定DBT的表观反应级数均为一级,表观活化能为47.9~55.4 kJ/mol. 相似文献
15.
16.
17.
杂多酸(盐)催化植物油环氧化反应 总被引:6,自引:0,他引:6
杂多酸(盐)催化植物油环氧化反应何沐光王晓红刘景福*(东北师范大学化学系长春130024)关键词环氧化反应,大豆油,玉米油,杂多化合物1997-05-05收稿,1997-08-11修回环氧化植物油主要用作聚氯乙烯以及其它含卤素高聚物的增塑剂兼热稳定剂... 相似文献
18.
合成了5种季铵盐类金属基离子液体(CPL-TBAB)/MCln(M=Ni,Cu,Co,Zn,Fe),分别考察了其对模型油的萃取脱硫效果.结果表明(CPL-TBAB)/CuCl2?2H2O对模型油的萃取脱硫效果最好.并确定了较佳萃取脱硫工艺条件为:CPL-TBAB与CuCl2?2H2O物质的量比为1∶0.8,剂油比VIL/VOIL为1∶1时,常温常压下,(CPL-TBAB)/0.8CuCl2?2H2O对模型油中二苯并噻吩(DBT)的萃取脱除率可以达到97.10%.重复使用6次后(CPL-TBAB)/0.8CuCl2?2H2O的脱硫率只有略微下降.(CPL-TBAB)/0.8CuCl2?2H2O对不同含硫化合物和真实柴油均有较好的萃取脱硫效果,对真实柴油的单程萃取脱硫率可以达到75.59%.所研制的离子液体是一种具有工业应用价值的脱硫萃取剂. 相似文献
19.
20.
以PhI(OAc)2为氧化剂,考察了1,3-二烷基咪唑硫酸酯系列离子液体中Mn(Salen)催化仲醇氧化的反应. 结果表明, 在MMISM-CH2Cl2(1:4,v:v)混合溶剂中, 反应条件为n((-苯乙醇): n(醋酸碘苯): n(催化剂1c)=50: 70: 1时, (-苯乙醇的转化率可以达到97.8%, 产物苯乙酮的选择性为100%, 远高于在纯CH2Cl2中的结果, 也要好于[bmim]BF4和[bmim]PF6对该反应的促进作用. 此外, BMISM及BEISE对催化剂1c有较好的稳定作用,催化剂可以重复使用. 相似文献