首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Well-defined one-dimensional single (In,Ga)As quantum dot (QD) arrays have been successfully formed on planar singular GaAs (1 0 0) in molecular beam epitaxy by self-organized anisotropic strain engineering of an (In,Ga)As/GaAs quantum wire (QWR) superlattice (SL) template. The distinct stages of template formation, which govern the uniformity of the QD arrays, are directly imaged by atomic force microscopy (AFM). The AFM results reveal that excess strain accumulation causes fluctuations of the QWR template and the QD arrays. By reducing the amount of (In,Ga)As and increasing the GaAs separation layer thickness in each SL period, the uniformity of the QD arrays dramatically improves. The single QD arrays are straight over more than 1 μm and extended to 10 μm length. Capped QD arrays show clear photoluminescence emission up to room temperature.  相似文献   

2.
The growth of a three-dimensional (3D) InAs quantum dot (QD) crystal on a patterned GaAs (0 0 1) substrate is demonstrated. The morphology of QDs grown on a surface patterned with shallow holes is studied as a function of the amount of deposited InAs. We observe that the QDs form in the patterned holes close to each other forming lateral QD bimolecules for InAs coverages below the commonly observed critical thickness of 1.6 monolayers. When the coverage increases, the QD bimolecules coalesce to form larger single QDs. The QDs in the holes are then capped with a Ga(Al)As spacer. The buried QD array serves as a strain template for controlling the formation site of the QDs in the second layer. By tuning the growth conditions for the second and subsequent layers, we achieve a 3D InAs QD crystal with a high degree of perfection. A detail investigation of the growth on hole patterns with different periodicities is presented.  相似文献   

3.
We have investigated circular-polarized photoluminescence (CPL) from a novel quantum structure in which a ferromagnetic semiconductor (Ga,Mn)As is placed adjacent to the GaAs quantum well. By eliminating the contribution of the magneto-circular dichroism effect of the (Ga,Mn)As top layer from the observed CPL, we found a small but nonnegligible contribution of quantum mechanical coupling between the GaAs quantum well states and the spin-polarized states in (Ga,Mn)As.  相似文献   

4.
We report on the fabrication of GaAs based p–i–n solar cells containing 5 and 10 layers of type II GaSb quantum rings grown by molecular beam epitaxy. Solar cells containing quantum rings show improved efficiency at longer wavelengths into the near-IR extending up to 1500 nm and show enhanced short-circuit current under 1 sun illumination compared to a GaAs control cell. A reduction in the open-circuit voltage is observed due to the build-up of internal strain. The MBE growth, formation and photoluminescence of single and stacked layers of GaSb/GaAs quantum rings are also presented.  相似文献   

5.
《Current Applied Physics》2019,19(5):557-562
Influence of Ga(Al)As substrates on surface morphology of InGaAs quantum dots and critical thickness of In0.5Ga0.5As film grown by molecular beam epitaxy is investigated. The In0.5Ga0.5As quantum dots are grown on (001) surfaces of GaAs and Al0.25Ga0.75 A at 450 °C, scanning tunneling microscope images show that the size of quantum dots varied slightly for 10 ML of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As surfaces. Reflection high energy electron diffraction (RHEED) is used to monitor the growth of 4 monolayers (ML) In0.5Ga0.5As on Al0.25Ga0.75As and GaAs surfaces during deposition. The critical thickness is theoretically calculated by adding energy caused by surface roughness and heat from substrate. The calculations show that the critical thickness of In0.5Ga0.5As grown on GaAs and Al0.25Ga0.75As are 3.2 ML and 3.8 ML, respectively. The theoretical calculation agrees with the experimental results.  相似文献   

6.
We present a study of the primary optical transitions and recombination dynamics in InGaAs self-assembled quantum nanostructures with different shape. Starting from the same quantum dot seeding layer, and depending on the overgrowth conditions, these new nanostructures can be tailored in shape and are characterized by heights lower than 2 nm and base lengths around 100 nm. The geometrical shape strongly influences the electronic and optical properties of these nanostructuctures. We measure for them ground state optical transitions in the range 1.25–1.35 eV and varying energy splitting between their excited states. The temperature dependence of the exciton recombination dynamics is reported focusing on the intermediate temperature regime (before thermal escape begins to be important). In this range, an important increase of the effective photoluminescence decay time is observed and attributed to the state filling and exciton thermalization between excited and ground states. A rate equation model is also developed reproducing quite well the observed exciton dynamics.  相似文献   

7.
The Optical characteristics of InAs quantum dots (QDs) embeded in InAlGaAs on InP have been investigated by photoluminescence (PL) spectroscopy and time-resolved PL. Four different QD samples are grown by using molecular beam epitaxy, and all the QD samples have five-stacked InAs quantum dot layers with a different InAlGaAs barrier thickness. The PL yield from InAs QDs was increased with an increase in the thickness of the InAlGaAs barrier, and the emission peak positions of all InAs QD samples were measured around 1.5 μm at room temperature. The decay time of the carrier in InAs QDs is decreased abruptly in the QD sample with the 5 nm InAlGaAs barrier. This feature is explained by the tunneling and coupling effect in the vertical direction and probably defect generation.  相似文献   

8.
The generation of electron spin coherence has been studied in n-modulation-doped (In,Ga)As/GaAs self-assembled quantum dots (QDs) which contain on average a single electron per dot. The doping has been confirmed by pump–probe Faraday rotation experiments in a magnetic field parallel to the heterostructure growth direction. For studying spin coherence, the magnetic field was rotated by 90° to the Voigt geometry, and the precession of the electron spin about the field was monitored. The coherence is generated by resonant excitation of the QDs with circularly polarized laser pulses, creating a coherent superposition of an electron, and a trion state. The efficiency of the generation can be controlled by the pulse intensity, being most efficient for (2n+1)π pulses.  相似文献   

9.
We investigate the effects of a thin AlAs layer with different position and thickness on the optical properties of InAs quantum dots (QDs) by using transmission electron microscopy and photoluminescence (PL). The energy level shift of InAs QD samples is observed by introducing the thin AlAs layer without any significant loss of the QD qualities. The emission peak from InAs QDs directly grown on the 4 monolayer (ML) AlAs layer is blueshifted from that of reference sample by 219 meV with a little increase in FWHM from 42–47 meV for ground state. In contrast, InAs QDs grown under the 4 ML AlAs layer have PL peak a little redshifted to lower energy by 17 meV. This result is related to the interdiffusion of Al atom at the InAs QDs caused by the annealing effect during growing of InAs QDs on AlAs layer.  相似文献   

10.
Conventional electron-beam lithographic patterning of GaAs substrates followed by reactive-ion etching of small holes has been successfully used to control the nucleation of InAs dots. We have observed >50% single dot occupancy for holes wide and deep and show that the dot occupancy and dot size can be varied by changing the size of the holes. Luminescence from an array of these site-controlled dots has been demonstrated. Thus this use of substrate patterning is a viable technique to controllably place single dots at pre-determined positions in devices.  相似文献   

11.
Self-assembled GaSb quantum dots (QDs) with a photoluminescence wavelength longer than 1.3 μm were successfully grown by suppressing the replacement of As and Sb on the surface of the GaSb QDs. This result means that GaSb can thus join InAs or GaInAs as a suitable material for QD lasers for optical communications.  相似文献   

12.
High density and ultrasmall size of Ge quantum dots (QDs) have been achieved directly on Si(0 0 1) (2 × 1) reconstruction surface. Their detailed morphology was observed by atomic force microscope (AFM) and shows that small pyramids, small domes, huts, and multi-headed large domes coexist in the film grown at 400 °C, while small domes and multi-headed large domes formed at 450 °C. Their low temperature photoluminescence (PL) showed that a very strong non-phonon (NP) peak with a large blue shift of 0.19 eV at 14 K, which can be attributed to their very high areal density, 5.2 × 1011 cm−2, and sub-10-nm mean size, 7.6 ± 2.3 nm.  相似文献   

13.
The coarsening of phosphorus-mediated Ge quantum dots (QDs) on Si(0 0 1) during in-situ annealing at 550 °C is studied. In-situ annealing makes the as-grown sample morphology be remarkably changed: the larger dots are formed and the dot density is greatly reduced. The results of chemical etching and Raman spectra reveal that the incorporation of Ge atoms which originate from the diminishing dots, rather than substrate Si atom incorporation is responsible for the dot coarsening at the incipient stage of in-situ annealing. Besides, Raman spectra suggest that the larger dots formed during in-situ annealing are dislocated, which was confirmed by cross-sectional high-resolution electron microscopy observation. Through the generation of dislocations, the strain in the dots is relaxed by about 50%.  相似文献   

14.
We present an atomic-scale analysis of the indium distribution of self-assembled (In,Ga)As quantum rings (QRs), which are formed from InAs quantum dots by capping with a thin layer of GaAs and subsequent annealing. We find that the size and shape of QRs as observed by cross-sectional scanning tunneling microscopy (X-STM) deviate substantially from the ring-shaped islands as observed by atomic force microscopy on the surface of uncapped QR structures. We show unambiguously that X-STM images the remaining quantum dot material whereas the AFM images the erupted quantum dot material. The remaining dot material shows an asymmetric indium-rich crater-like shape with a depression rather than an opening at the center and is responsible for the observed electronic properties of QR structures. These quantum craters have an indium concentration of about 55% and a diameter of about 20 nm, which is consistent with the observed electronic radius of QR structures. Based on the structural information from the X-STM measurements, we calculate the magnetization as a function of the applied magnetic field. We conclude that, although the real QR shape differs strongly from an idealized circular-symmetric open ring structure, Aharonov–Bohm-type oscillations in the magnetization can be expected.  相似文献   

15.
The time evolution of the quantum entropy in a coherently driven triple quantum dot molecule is investigated. The entanglement of the quantum dot molecule and its spontaneous emission field is coherently controlled by the gate voltage and the rate of an incoherent pump field. The degree of entanglement between a triple quantum dot molecule and its spontaneous emission fields is decreased by increasing the tunneling parameter.  相似文献   

16.
Current–voltage and low frequency excess electrical noise characteristics of two different—Schottky diode and n-i-n diode—GaAs structures embedded with self-assembled In(Ga)As quantum dots are reported. We find the growth of quantum dots induces defects not only near the quantum dot but also extended to quite a distance toward the growth direction. In Schottky diode structure, comparing with the reference sample without the quantum dot layer, the current dependence of the low frequency noise spectral density indicated that the noise is from the generated interface states with the density increasing towards the band tail. Also the crystal quality of the Schottky diode including the quantum dot layer, deduced from the Hooge parameter, was slightly worse than that of the reference sample. For n-i-n diode structure, the current–voltage relation was linear, and a quadratic current dependence of the noise spectral density was observed. The Hooge parameter for the n-i-n structure was determined to be on the order of unity indicating the general degradation of the structure.  相似文献   

17.
We show how an atomistic pseudopotential plus many-body configuration interaction theory can address the main spectroscopic features of self-assembled dots including, excitons, trions, biexcitons, fine-structure, charging spectra as well as electric-field dependence of entanglement in dot molecules.  相似文献   

18.
We report direct observation of tunneling emission of electrons and holes from In(Ga)As/GaAs QDs in time resolved capacitance spectroscopy. From the dependence of the tunneling time constant on the external electric field the important entire localization energies of electron and holes in In(Ga)As QDs are determined with high accuracy. The results yield electron and hole localization energies of and , respectively, which is in excellent agreement with 8-band k·p theory.  相似文献   

19.
We compare open quantum dot magnetoconductance spectra from experiment and theory in the presence of environmental coupling and attributed broadening. Estimates of the phase-breaking time in experiment, and effective broadening in simulation, are determined independently. In a larger, more open dot, with a significantly shorter phase-breaking time, the observed spectrum is broadened, most noticeably about B=0. The required broadening in simulation is characterized by effective temperatures higher than estimates from experiment; however, without accounting for disorder, which will further broaden the spectrum, the agreement is reasonable.  相似文献   

20.
The time-dependent electron transport through a quantum dot with the additional over-dot (bridge) tunneling channel within the evolution operator technique has been studied. The microwave field applied to the leads and quantum dot has been considered and influence of the time-dependent shift of corresponding energy levels on the quantum dot charge and current flowing in the system, its time-averaged values and derivatives of the average current with respect to the gate and source–drain bias voltages have been investigated. The influence of the over-dot tunneling channel on the photon-assisted tunneling has been also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号