首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
简要回顾了高能核碰撞中夸克胶子等离子体的软探针和硬探针的一些最新进展,主要内容集中在相对论重离子对撞机和大型强子对撞机实验中各向异性集体流和喷注淬火的理论和唯象研究,对小系统中集体流的来源也做了简要的讨论。对于软探针,讨论了初态三维涨落和碰撞几何各向异性、相对论流体力学演化、末态各向异性集体流以及集体流的涨落、关联和纵向去关联等。通过与实验数据作系统的比较,可以探测重离子碰撞中夸克胶子等离子体的动力演化和各种输运性质。对于硬探针,集中讨论了部分子能量损失和喷注淬火对部分子味道的依赖性、重味夸克在夸克胶子等离子体中的强子化、整体喷注在核介质中的演化以及核介质对喷注的响应等。细致分析相关的观测量,可以帮助我们更全面地了解相对论核碰撞中喷注与核介质的相互作用以及重味粒子的生成。对于小系统,讨论初态和末态效应在解释小系统中轻强子和重味强子的集体流方面的贡献,这有助于我们理解大碰撞系统中集体流的起源成因。  相似文献   

2.
We study the effects of jet quenching on the hydrodynamical evolution of the quark-gluon plasma (QGP) fluid created in a heavy-ion collision. In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-pT hadrons. Assuming that the deposited energy quickly thermalizes, we simulate the subsequent hydrodynamic evolution of the QGP fluid. For partons moving at supersonic speed, vp>cs, and sufficiently large energy loss, a shock wave forms leading to conical flow. The PHENIX Collaboration recently suggested that observed structures in the azimuthal angle distribution might be caused by conical flow. We show here that, for phenomenologically acceptable values of parton energy loss, conical flow effects are too weak to explain these structures.  相似文献   

3.
In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-pTpT hadrons. Assuming that the deposited energy quickly thermalizes, we simulate the subsequent hydrodynamic evolution of the QGP fluid. Explicit simulation of Au + Au collision with and without a quenching jet indicate that elliptic flow is greatly reduced in a jet event. The result can be used to identify the jet events in heavy ion collisions.  相似文献   

4.
We propose a new framework, merging High Energy Factorization with final-state jet quenching effects due to interactions in a quark–gluon plasma, to compute di-jet rates at mid-rapidity and forward rapidity. It allows one to consistently study the interplay of initial-state effects with medium interactions, opening the possibility for understanding the dynamics of hard probes in heavy-ion collisions and the QGP evolution in rapidity.  相似文献   

5.
《Nuclear Physics A》1998,637(3):421-432
We derive the expressions of the vector and axial current from a chiral Lagrangian restricted to nucleons and pions. They display mixing terms between the axial and vector currents. We study the modifications in the nuclear medium of the coupling constants of the axial current, namely the pion decay constant and the nucleonic axial one due to the requirements of chiral symmetry. We express the renormalizations in terms of the local scalar pion density. The latter also governs the quark condensate evolution and we discuss the link between this evolution and the renormalizations. In the case of the nucleon axial coupling constant this renormalization corresponds to a new type of pion exchange currents, with two exchanged pions. We give an estimate for the resulting quenching. Although moderate it helps explaining the quenching experimentally observed.  相似文献   

6.
MRI volume imaging and flow visualizations are used to investigate solid fine-particle deposition during flow within a random packing of glass spheres. This process is of importance in many fields including filtration, operation of chemical reactors and oil recovery. Visualizations before and during deposition allow us to investigate how the structure of the inter-particle space and the properties of the fines influence the evolution of the structure and hydrodynamics characterizing the porous medium during deposition.  相似文献   

7.
In the presence of collective flow a new model potential describing the interaction of the hard jet with scattering centers is derived based on the static color-screened Yukawa potential.The flow effect on jet quenching with detailed balance is investigated in pQCD.It turns out,considering the collective flow with velocity vzalong the jet direction,the collective flow decreases the LPM destructive interference comparing to that in the static medium.The gluon absorption plays a more important role in the moving medium.The collective flow increases the energy gain from gluon absorption,however,decreases the energy loss from gluon radiation,which is(1-vz)times as that in the static medium to the first order of opacity.In the presence of collective flow,the second order in opacity correction is relatively small compared to the first order.So that the total effective energy loss is decreased.The flow dependence of the energy loss will affect the suppression of high pThadron spectrum and anisotropy parameter v2in high-energy heavy-ion collisions.  相似文献   

8.
We examine, via two-dimensional numerical simulation of a model system, some unsteady transient ignition scenarios and sustained oscillatory combustion modes that can occur in a single-pass, conductive channel, premixed microburner. These issues are relevant to the problem of ignition, evolution to stable combustion and the operational modes of microcombustors. First, we describe an unsteady ignition sequence that may occur when a single-pass microburner with initially cold walls has its exit walls heated and maintained at a fixed temperature. In particular, we demonstrate that as the heat from the exit walls propagates down the microburner walls, a reaction wave is driven rapidly down the channel towards the inlet via a sequence of oscillatory ignition and quenching transients. This scenario has been observed experimentally during the ignition of a single-pass microburner. Secondly, we show how an initial axial wall temperature gradient can lead to a variety of sustained combustion modes within the channel, including stable stationary flames, regimes of periodic motion involving quenching and re-ignition, regimes of regular oscillatory combustion, and regimes consisting of a combination of re-ignition/quenching events and regular oscillatory motions, all of which have been observed experimentally.  相似文献   

9.
Jet quenching has been proposed as a probe of the properties of the strongly interacting quarkgluon-plasma in high energy heavy ion collisions.At the meantime,it is also important to study the excitation of medium by propagating jets.Based on Boltzmann equation,a Monte Carlo was constructed to simulate the elastic collisions with thermal partons by energetic jets.Medium modification due to jet-medium interaction has been studied within this model in a uniform medium.  相似文献   

10.
有限理性视野下网络交通流逐日演化规律研究   总被引:1,自引:0,他引:1       下载免费PDF全文
李涛  关宏志  梁科科 《物理学报》2016,65(15):150502-150502
基于有限理性的前提假设,建立了"有限理性二项logit"模型,用以描述出行者路径选择行为,并以一个由2条路径构成的路网为例,探讨了理性程度不同群体的网络交通流逐日动态演化过程,通过数值实验,分析了网络交通流的演化特征,发现网络交通流演化最终状态除了与出行者群体对费用的敏感程度、对实际费用的依赖程度有关,还与出行者群体的理性程度有很大关系.在一定的情况下,出行者理性程度很高或很低均可以使系统稳定,而恰恰是理性程度一般的群体不容易达到稳定.  相似文献   

11.
In this study, we investigate the impact of the magnetic field on the evolution of the transverse flow of QGP matter in the magneto-hydrodynamic (MHD) framework. We assume that the magnetic field is perpendicular to the reaction plane and then we solve the coupled Maxwell and conservation equations in (1+1D) transverse flow, within the Bjorken scenario. We consider a QGP with infinite electrical conductivity. First, the magnetic effects on the QGP medium at mid-rapidity are investigated at leading order; then the time and space dependence of the energy density, velocity and magnetic field in the transverse plane of the ideal magnetized hot plasma are obtained.  相似文献   

12.
Cyclic wave gate     
We designed, and studied experimentally, an active system for quenching surface gravity waves in a liquid. This system is based on the cyclic wave gate (CWG) principle. The thickness of the quenching system was about one-tenth of the length of the seiche wave but can also be much smaller than that in accordance with the CWG principle. The use of a high spatio-temporal resolution for parameter control of the waveguiding medium in the active region of the CWG and the opacity of this medium for high-frequency waves make it unnecessary to measure the wave field and generate a quenching wave. Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 43, No. 7, pp. 657–664, July, 2000.  相似文献   

13.
The current status of the understanding of jet quenching in nuclear collisions at RHIC is reviewed. The experimentally large level of suppression of jets in Au+Au collisions at RHIC is a success, but also introduces a challenge in terms of quantitative understanding of the properties of the collision zone. The medium appears to be equally black to all interacting probes utilized to date, limiting the amount of tomographic information that can be obtained from quenching phenomena. In order to recover this information, a probe to which the medium is gray needs to be found. PACS 25.75.-q  相似文献   

14.
 采用同步辐射能散X射线衍射技术,研究了高温高压下利用冲击波淬火技术制备的Zr41Ti14Cu12.5Ni10Be22.5大块金属玻璃的相演化过程。研究结果发现:在实验压力范围内,在不同压力下试样具有相同的初始析出相Zr2Be17,但是随后的相演化过程是不同的,根据应用压力的不同,试样的相演化过程可以分为3个不同的区域;另外,试样的晶化温度随着压力的增大而升高,但是在6.0 GPa存在一个突然的下降,在此压力点试样具有不同于其它压力点的相演化过程。相演化过程的不同和晶化温度的突然下降,可能归因于在不同压力下试样具有不同的原子构型。  相似文献   

15.
Strongly coupled dusty plasma medium is often described as a viscoelastic fluid that retains its memory. In a flowing dusty plasma medium, vortices of different sizes appear when the flow does not remain laminar. The vortices also merge to transfer energy between different scales. In the present work, we study the effect of viscoelasticity and compressibility over a localized vortex structure and multiple rotational vortices in a strongly coupled viscoelastic dusty plasma medium. In case of single rotating vortex flow, a transverse wave is generated from the localized vortex source and the evolution time of generated waves is found to be reduced due to finite viscoelasticity and compressibility of the medium. It is found that the viscoelasticity suppresses the dispersion of vorticity. In the presence of multiple vortices, we find, the vortex mergers get highly affected in the presence of memory effect of the fluid, and thus the dynamics of the medium gets completely altered compared to a non‐viscoelastic fluid. For a compressible fluid, viscoelasticity dampens the energy in the sonic waves generated in the medium. Thus a highly viscoelastic and compressible fluid, in some cases, behaves similarly to an incompressible viscoelastic fluid. The wave‐front like rings propagate in elliptical orbits keeping the footprint of the earlier position of the point‐vortex. The rings collide with each other even within the patch vortex region forming regions of high vorticity at the point of intersection and pass through each other.  相似文献   

16.
Knowing whether a hadron is formed inside or outside the nuclear medium is very important for correctly interpreting jet quenching in heavy-ion collisions. The cleanest experimental environment to study the space-time evolution of hadronization is semi-inclusive DIS on nuclear targets. 2 frameworks are presently competing to explain the observed attenuation of hadron production: quark energy loss, with hadron formation outside the nucleus [2, 3], and nuclear absorption with hadronization starting inside the nucleus [4–6]. I demonstrate that the observed approximate A 2/3 scaling of experimental data cannot conclusively establish the correctness of either energy loss or absorption.  相似文献   

17.
We present time- and spectral-resolved phosphorescence study of hypericin as well as evolution of singlet oxygen formation and elimination under the illumination of hypericin in acetone solution. The obtained time-resolved hypericin phosphorescence can be satisfactorily fitted by using a two-exponential decay curve. The value of shorter component is about 0.29 μs and is independent of the hypericin concentration in the studied range (2–200 μM). The rise time of singlet oxygen production matches this value perfectly. It confirms that singlet oxygen formation represents the significant channel of hypericin triplet state deactivation under aerobic conditions at room temperature. The total phosphorescence intensity of hypericin is linearly proportional to the hypericin concentration within the studied concentration range, but the singlet oxygen phosphorescence intensity exhibits saturation behavior. This observation is a result of at least two effects: quenching of singlet oxygen by hypericin, as well as quenching of singlet oxygen by singlet oxygen.  相似文献   

18.
Features in the evolution of the atomic structure of the Ni60Ag40 alloy upon quenching from a liquid disordered state were revealed within the molecular-dynamics method using many-particle potentials of interatomic interaction, calculated within the embedded atom method. It was shown that the structural stabilization of the amorphous Ni60Ag40 phase during the glass transition occurs due to the formation of a percolation cluster of interpenetrating and contacting icosahedra with nickel and silver atoms at vertices and preferentially nickel atoms at centers.  相似文献   

19.
The present investigation addresses the need to understand the physics and chemistry involved in propellant combustion processes in micro-scale combustors for propulsion systems on micro-spacecraft. These spacecraft are planned to have a mass less than 50 kg with attitude control estimated to be in the 1–10 mN thrust class. Micro-propulsion devices behave differently than macro-scale devices because of the differences in magnitude of flow rates and heat transfer. Reducing the combustor size increases the relative surface area, increasing the heat loss, and as combustors are continuously reduced in size, they approach the quenching dimensions of the propellants. Combustors of this size are expected to significantly benefit from surface catalysis processes. A miniature flame tube apparatus is chosen for this study because microtubes can be easily fabricated from known catalyst materials, and their simplicity in geometry can be used in fundamental simulations for validation purposes. Experimentally, we investigated the role of catalytically active surfaces within 0.4 and 0.8 mm internal diameter microtubes, with special emphases on ignition processes in fuel rich gaseous hydrogen and gaseous oxygen. Calculations of flame thickness and reaction zone thickness predict that the diameters of our test apparatus are below the quenching diameter of the propellants in most atmospheric test conditions. The temperature and pressure rise in resistively heated platinum microtubes and the exit hydrogen concentration were used as an indication of exothermic reactions. Data on imposed heat flux/preheat temperature required to achieve ignition versus mass flow rate are presented. With a plug flow model, the experimental conditions were simulated with detailed gas-phase chemistry and surface kinetics. Computational results, in general, support the experimental findings.  相似文献   

20.
In general, a rapid quenching is required to obtain an amorphous metal. It is known that an intensive ultrasonication generates a very high temperature within cavitation bubbles in a very short moment, which enables a rapid quenching process in a liquid phase synthesis. In this study, the sonochemically-derived “amorphous iron” from Fe(CO)5 was carefully examined by XRD, TEM, TG-DTA. The product was found to be an amorphous containing a certain amount (∼15%) of volatile component that can be removed by heating in a nitrogen flow. After annealed in the inert atmosphere at 600 °C, cooled down to room temperature, and then exposed in air (oxygen), the sample showed a strong exotherm accompanied by a weight gain. This is due to oxidation of fine metallic iron. Experimental operations of such a reactive material were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号