首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (1+1)-dimensional F-expansion technique and the homogeneous nonlinear balance principle have been generalized and applied for solving exact solutions to a general (3+1)-dimensional nonlinear Schr6dinger equation (NLSE) with varying coefficients and a harmonica potential. We found that there exist two kinds of soliton solutions. The evolution features of exact solutions have been numerically studied. The (3+1)D soliton solutions may help us to understand the nonlinear wave propagation in the nonlinear media such as classical optical waves and the matter waves of the Bose-Einstein condensates.  相似文献   

2.
A systematic method which is based on the classical Lie group reduction is used to find the novel exact solution of the cubic-quintic nonlinear Schrödinger equation (CQNLS) with varying dispersion, nonlinearity, and gain or absorption. Algebraic solitary-wave as well as kink-type solutions in three kinds of optical fibers represented by coefficient varying CQNLS equations are studied in detail. Some new exact solutions of optical solitary wave with a simple analytic form in these models are presented. Appropriate solitary wave solutions are applied to discuss soliton propagation in optical fibres, and the amplification and compression of pulses in optical fibre amplifiers.  相似文献   

3.
We study solutions of the nonlinear Schroedinger equation (NLSE) and higher-order nonlinear Sehroedinger equation (HONLSE) with variable coefficients. By considering all the higher-order effect of HONLSE as a new dependent variable, the NLSE and HONLSE can be changed into one equation. Using the generalized Lie group reduction method (CLGRM), the abundant solutions of NLSE and HONLSE are obtained.  相似文献   

4.
With the procedure to solve explicitly the equations of the Riemann matrix with poles, multisoliton solutions to the DNLS equation are found formally. A single soliton solution is given explicitly and the asymptotic behaviors of multisoliton solutions are discussed.  相似文献   

5.
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

6.
By using an improved hyperbola function method, several types of exact travelling wave solutions to a coupled nonlinear evolution equation are obtained, which include kink-shaped soliton solutions, bell-shaped soliton solutions, envelop solitary wave solutions, and new solitary waves. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

7.
In this paper, a new generalized extended tanh-function method is presented for constructing soliton-like,period-form solutions of nonlinear evolution equations (NEEs). This method is more powerful than the extended tanhfunction method [Phys. Lett. A 277 (2000) 212] and the modified extended tanh-function method [Phys. Lett. A 285 (2001) 355]. Abundant new families of the exact solutions of Bogoyavlenskii‘s generalized breaking soliton equation are obtained by using this method and symbolic computation system Maple.  相似文献   

8.
In this paper, a new generalized extended tanh-function method is presented for constructing soliton-like,period-form solutions of nonlinear evolution equations (NEEs). This method is more powerful than the extended tanhfunction method [Phys. Left. A 277 (2000) 212] and the modified extended tanh-function method [Phys. Left. A 285 (2001) 355]. Abundant new families of the exact solutions of Bogoyavlenskii‘s generalized breaking soliton equation are obtained by using this method and symbolic computation system Maple.  相似文献   

9.
We propose two simple ansaetze that allow us to obtain different analytical solutions for two generalizeal versions of the nonlinear Schrodinger equation, such as the averaged dispersive-managed fiber system equation and the extended nonlinear Schrodinger equation which describe the femtosecond pulse propagation in monomode optical fiber. Among these solutions we can find solitary wave and periodic wave solutions representing the propagation of different waveforms in nonlinear media.  相似文献   

10.
含高阶非线性效应的薛定谔方程的精确解研究   总被引:1,自引:0,他引:1  
利用孤子理论,研究了含三次和五次非线性项的非线性薛定谔方程,在参数取不同值时得到了方程的新型亮孤子解、新型暗孤子解和新的三角函数周期解。  相似文献   

11.
Instead of the usual Hirota ansatz, i.e., the functions in bilinear equations being chosen as exponential types, a generalized Hirota ansatz is proposed for a (3+1)-dimensional nonlinear evolution equation. Based on the resulting generalized Hirota ansatz, a family of new explicit solutions for the equation are derived.  相似文献   

12.
In this letter the three-dimensional nonlinear Helmholtz equation is investigated, which describes electro-magnetic wave propagation in a nonlinear Kerr-type medium such that sixteen families of new Jacobi elliptic functionsolutions are obtained, by using our extended Jacobian elliptic function expansion method. When the modulus m → 1or0, the corresponding solitary waves including bright solitons, dark solitons and new line solitons and singly periodicsolutions can be also found.  相似文献   

13.
In this letter the three-dimensional nonlinear Helmholtz equation is investigated.which describes electromagnetic wave propagation in a nonlinear Kerr-type medium such that sixteen families of new Jacobi elliptic function solutions are obtained,by using our extended Jacobian elliptic function expansion method.When the modulus m-→1 or 0,the corresponding solitary waves including bright solitons,dark solitons and new line solitons and singly periodic solutions can be also found.  相似文献   

14.
A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple.  相似文献   

15.
A new approach is presented by means of a new general ansätz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, discretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple.  相似文献   

16.
The symmetries, symmetry reductions, and exact solutions of a coupled nonlinear Schrodinger (CNLS) equation derived from the governing system for atmospheric gravity waves are researched by means of classical Lie group approach in this paper. Calculation shows the CNLS equation is invariant under some Galilean transformations, scaling transformations, phase shifts, and space-time translations. Some ordinary differential equations are derived from the CNLS equation. Several exact solutions including envelope cnoidal waves, solitary waves and trigonometric function solutions for the CNLS equation are also obtained by making use of symmetries.  相似文献   

17.
In this paper, by means of the variable-coefficient mapping method based on elliptical equation, we obtain explicit solutions of nonlinear Schrodinger equation with variable-coefficient. These solutions include Jacobian elliptic function solutions, solitary wave solutions, soliton-like solutions, and trigonometric function solutions, among which some are found for the first time. Six figures are given to illustrate some features of these solutions. The method can be applied to other nonlinear evolution equations in mathematical physics.  相似文献   

18.
Taking the Konopelchenko-Dubrovsky system as a simple example, some families of rational formal hyperbolic function solutions, rational formal triangular periodic solutions, and rational solutions are constructed by using the extended Riccati equation rational expansion method presented by us. The method can also be applied to solve more nonlinear partial differential equation or equations.  相似文献   

19.
In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenerate as the corresponding envelope soliton solutions, envelope shock wave solutions. Especially, for the 3-coupled NLS system, five types of Jacobi elliptic function envelope solutions are illustrated both analytically and graphically. Two types of those degenerate as envelope soliton solutions.  相似文献   

20.
Using trial equation method, abundant exact envelope traveling wave solutions of high-order dispersive cubic-quintic nonlinear Schr6dinger equation, which include envelope soliton solutions, triangular function envelope solutions, and Jacobian elliptic function envelope solutions, are obtained. To our knowledge, all of these results are new. In particular, our proposed method is very simple and can be applied to a lot of similar equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号