首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The skin is in constant exposure to various external environmental stressors, including solar ultraviolet (UV) radiation. Various wavelengths of UV light are absorbed by the DNA and other molecules in the skin to cause DNA damage and induce oxidative stress. The exposure to excessive ultraviolet (UV) radiation and/or accumulation of damage over time can lead to photocarcinogenesis and photoaging. The nucleotide excision repair (NER) system is the sole mechanism for removing UV photoproduct damage from DNA, and genetic disruption of this repair pathway leads to the photosensitive disorder xeroderma pigmentosum (XP). Interestingly, recent work has shown that NER is controlled by the circadian clock, the body's natural time‐keeping mechanism, through regulation of the rate‐limiting repair factor xeroderma pigmentosum group A (XPA). Studies have shown reduced UV‐induced skin cancer after UV exposure in the evening compared to the morning, which corresponds with times of high and low repair capacities, respectively. However, most studies of the circadian clock–NER connection have utilized murine models, and it is therefore important to translate these findings to humans to improve skin cancer prevention and chronotherapy.  相似文献   

2.
A new approach to photoprotection is to repair DNA damage after UV exposure. This can be accomplished by delivery of a DNA repair enzyme with specificity to UV-induced cyclobutane pyrimidine dimers into skin by means of specially engineered liposomes. Treatment of DNA-repair-deficient xeroderma pigmentosum patients or skin cancer patients with T4N5 liposome lotion containing such DNA repair liposomes increases the removal of DNA damage in the first few hours after treatment. In these studies, a DNA repair effect was observed in some patients treated with heat-inactivated enzyme. Unexpectedly, it was discovered that the heat-inactivated T4 endonuclease V enzyme refolds and recovers enzymatic activity. These studies demonstrate that measurements of molecular changes induced by biological drugs are useful adjuvants to clinical studies.  相似文献   

3.
4.
Ultraviolet (UV) radiation from sunlight is a major etiologic factor for skin cancer, the most prevalent cancer in the United States, as well as premature skin aging. In particular, UVB radiation causes formation of specific DNA damage photoproducts between pyrimidine bases. These DNA damage photoproducts are repaired by a process called nucleotide excision repair, also known as UV‐induced DNA repair. When left unrepaired, UVB‐induced DNA damage leads to accumulation of mutations, predisposing people to carcinogenesis as well as to premature aging. Genetic loss of nucleotide excision repair leads to severe disorders, namely, xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS), which are associated with predisposition to skin carcinogenesis at a young age as well as developmental and neurological conditions. Regulation of nucleotide excision repair is an attractive avenue to preventing or reversing these detrimental consequences of impaired nucleotide excision repair. Here, we review recent studies on molecular mechanisms regulating nucleotide excision repair by extracellular cues and intracellular signaling pathways, with a special focus on the molecular regulation of individual repair factors.  相似文献   

5.
Ultraviolet (UV) radiation is among the most prevalent environmental factors that influence human health and disease. Even 1 h of UV irradiation extensively damages the genome. To cope with resulting deleterious DNA lesions, cells activate a multitude of DNA damage response pathways, including DNA repair. Strikingly, UV-induced DNA damage formation and repair are affected by chromatin state. When cells enter S phase with these lesions, a distinct mutation signature is created via error-prone translesion synthesis. Chronic UV exposure leads to high mutation burden in skin and consequently the development of skin cancer, the most common cancer in the United States. Intriguingly, UV-induced oxidative stress has opposing effects on carcinogenesis. Elucidating the molecular mechanisms of UV-induced DNA damage responses will be useful for preventing and treating skin cancer with greater precision. Excitingly, recent studies have uncovered substantial depth of novel findings regarding the molecular and cellular consequences of UV irradiation. In this review, we will discuss updated mechanisms of UV-induced DNA damage responses including the ATR pathway, which maintains genome integrity following UV irradiation. We will also present current strategies for preventing and treating nonmelanoma skin cancer, including ATR pathway inhibition for prevention and photodynamic therapy for treatment.  相似文献   

6.
The xeroderma pigmentosum (XP-E) DNA damage binding protein (DDB2) is involved in early recognition of global genome DNA damage during DNA nucleotide excision repair (NER). We found that skin fibroblasts from four newly reported XP-E patients with numerous skin cancers and DDB2 mutations had slow repair of 6-4 photoproducts (6-4PP) and markedly reduced repair of cyclobutane pyrimidine dimers (CPD). NER proteins (XPC, XPB, XPG, XPA and XPF) colocalized to CPD and 6-4PP positive regions immediately (<0.1 h) after localized UV irradiation in cells from the XP-E patients and normal controls. While these proteins persist in normal cells, surprisingly, within 0.5 h these repair proteins were no longer detectable at the sites of DNA damage in XP-E cells. Our results indicate that DDB2 is not required for the rapid recruitment of NER proteins to sites of UV photoproducts or for partial repair of 6-4PP but is essential for normal persistence of these proteins for CPD photoproduct removal.  相似文献   

7.
MOLECULAR MECHANISMS OF ULTRAVIOLET RADIATION CARCINOGENESIS   总被引:17,自引:0,他引:17  
UV radiation is a potent DNA damaging agent and a known inducer of skin cancer in experimental animals. There is excellent scientific evidence to indicate that most non-melanoma human skin cancers are induced by repeated exposure to sunlight. UV radiation is unique in that it induces DNA damage that differs from the lesions induced by any other carcinogen. The prevalence of skin cancer on sun-exposed body sites in individuals with the inherited disorder XP suggests that defective repair of UV-induced DNA damage can lead to cancer induction. Carcinogenesis in the skin, as elsewhere, is a multistep process in which a series of genetic and epigenetic events leads to the emergence of a clone of cells that have escaped normal growth control mechanisms. The principal candidates that are involved in these events are oncogenes and tumor suppressor genes. Oncogenes display a positive effect on transformation, whereas tumor suppressor genes have an essentially negative effect, blocking transformation. Activated ras oncogenes have been identified in human skin cancers. In most cases, the mutations in the ras oncogenes have been localized to pyrimidine-rich sequences, which indicates that these sites are probably the targets for UV-induced DNA damage and subsequent mutation and transformation. The finding that activation of ras oncogenes in benign and self-regressing keratoacanthomas in both humans and in animals indicates that they play a role in the early stages of carcinogenesis (Corominas et al., 1989; Kumar et al., 1990). Since cancers do not arise immediately after exposure to physical or chemical carcinogens, ras oncogenes must remain latent for long periods of time. Tumor growth and progression into the more malignant stages may require additional events involving activation of other oncogenes or deletion of growth suppressor genes. In addition, amplification of proto-oncogenes or other genes may also be involved in tumor induction or progression. In contrast to the few studies that implicate the involvement of oncogenes in UV carcinogenesis, the role of tumor suppressor genes in UV carcinogenesis is unknown. Since cancer-prone individuals, particularly XP patients, lack one or more repair pathways, one can speculate that DNA repair enzymes would confer susceptibility to both spontaneous and environmentally induced cancers. Another potential candidate that can function as a tumor suppressor gene is the normal c-Ha-ras gene. Spandidos and Wilkie (1988) have shown that the normal c-Ha-ras gene can suppress transformation induced by the mutated ras gene.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Ultraviolet photolesions endow DNA with distinct structural and dynamic properties. Biophysical studies of photoproduct-containing DNA have shown that these lesions affect the mutagenic properties of DNA and damage recognition by DNA repair systems. Recently obtained high-resolution cocrystal structures of damaged DNA bound to either DNA polymerase or DNA repair enzymes have enriched our understanding of the mechanisms by which DNA lesions are bypassed or recognized by DNA metabolizing proteins. Here, we summarize the results of these structural studies and discuss their implications for DNA metabolism.  相似文献   

9.
Nonmelanoma skin cancer, derived from epidermal keratinocytes, is the most common malignancy in organ transplant recipients, causes serious morbidity and mortality, and is strongly associated with solar ultraviolet (UV) exposure. Preventing and treating skin cancer in these individuals has been extraordinarily challenging. Following organ transplantation, the immunosuppressants are used to prevent graft rejection. Until now, immunosuppression has been assumed to be the major factor leading to skin cancer in this setting. However, the mechanism of skin carcinogenesis in organ transplant recipients has not been understood to date; specifically, it remains unknown whether these cancers are immunosuppression‐dependent or ‐independent. In particular, it remains poorly understood what is the mechanistic carcinogenic action of the newer generation of immunosuppressants including tacrolimus and mycophenolate mofetil (MMF). Here, we show that tacrolimus and MMF impairs UVB‐induced DNA damage repair and apoptosis in human epidermal keratinocytes. In addition, tacrolimus inhibits UVB‐induced checkpoint signaling. However, MMF had no effect. Our findings have demonstrated that tacrolimus and MMF compromises proper UVB response in keratinocytes, suggesting an immunosuppression‐independent mechanism in the tumor‐promoting action of these immunosuppressants.  相似文献   

10.
The nucleotide excision repair system removes a wide variety of DNA lesions from the human genome, including photoproducts induced by ultraviolet (UV) wavelengths of sunlight. A defining feature of nucleotide excision repair is its dual incision mechanism, in which two nucleolytic incision events on the damaged strand of DNA at sites bracketing the lesion generate a damage‐containing DNA oligonucleotide and a single‐stranded DNA gap approximately 30 nucleotides in length. Although the early events of nucleotide excision repair, which include lesion recognition and the dual incisions, have been explored in detail and are reasonably well understood, the fate of the single‐stranded DNA gaps and excised oligonucleotide products of repair have not been as extensively examined. In this review, recent findings that address these less‐explored aspects of nucleotide excision repair are discussed and support the concept that postincision gap and excised oligonucleotide processing are critical steps in the cellular response to DNA damage induced by UV light and other environmental carcinogens. Defects in these latter stages of repair lead to cell death and other DNA damage signaling responses and may therefore contribute to a number of human disease states associated with exposure to UV wavelengths of sunlight, including skin cancer, aging and autoimmunity.  相似文献   

11.
People can expose their oral cavities to UV (290–400 nm) by simply opening their mouths while outdoors. They can also have their oral cavities exposed to UV indoors to different UV‐emitting devices used for diagnoses, treatments and procedures like teeth whitening. Because the World Health Organization declared UV radiation as a complete human carcinogen in 2009, we asked if oral tissues are at a similar or higher carcinogenic risk compared to skin tissue. To understand the UVB (290–320 nm)‐related carcinogenic risks to these tissues, we measured initial DNA damage in the form of cyclobutane pyrimidine dimers (CPD), the repair rate of CPD (24 h) and the number of apoptotic dead cells over time resulting from increasing doses of erythemally weighted UV radiation. We used commercially available 3D‐engineered models of human skin (EpiDerm?), gingival (EpiGingival?) and oral (EpiOral?) tissues and developed an analytical approach for our tri‐labeling fluorescent procedure to identify total DNA, CPD and apoptotic cells so we can simultaneously quantify DNA repair rates and dead cells. Both DNA repair and apoptotic cell numbers are significantly lower in oral cells compared with skin cells. The combined results suggest UVB‐exposed oral tissues are at a significantly higher carcinogenic risk than skin tissues.  相似文献   

12.
The human nucleotide excision repair system targets a wide variety of DNA adducts for removal from DNA, including photoproducts induced by UV wavelengths of sunlight. A key feature of nucleotide excision repair is its dual incision mechanism, which results in generation of a small, damage‐containing oligonucleotide approximately 24 to 32 nt in length. Detection of these excised oligonucleotides using cell‐free extracts and purified proteins with defined DNA substrates has provided a robust biochemical assay for excision repair activity in vitro. However, the relevance of a number of in vitro findings to excision repair in living cells in vivo has remained unresolved. Over the past few years, novel methods for detecting and isolating the excised oligonucleotide products of repair in vivo have therefore been developed. Here we provide a basic outline of a sensitive and versatile in vivo excision assay and discuss how the assay both confirms previous in vitro findings and offers a number of advantages over existing cell‐based DNA repair assays. Thus, the in vivo excision assay offers a powerful tool for readily monitoring the repair of DNA lesions induced by a large number of environmental carcinogens and anticancer compounds.  相似文献   

13.
14.
DNA repair plays a central role in the cellular response to UV. In this work we have studied the response of skin cells (i.e. fibroblasts and keratinocytes) from the same or from different individuals after both ultraviolet-B (UV-B) and ultraviolet-C (UV-C) irradiations using the comet assay to characterize the specific cellular response to UV-induced DNA damage. Cells were irradiated with increasing doses of UV-B or UV-C. To study the UV dose dependency of initial steps of DNA repair, namely recognition and incision at DNA damage level, the comet assay was performed, under alkaline conditions, 60 min after UV irradiation to allow detection of DNA strand breaks. Comparative analysis of tail moment values after UV exposure of cells from the same or from different individuals showed interexperimental and interindividual variations, implying that repeated assays are necessary to characterize the individual DNA repair capacity. With increasing doses of UV in keratinocytes, a plateau was rapidly reached after irradiation, whereas in fibroblasts a linear dose-effect relationship was observed. These interindividual variations associated with cellular specificity in DNA response may be of significance in skin cell and individual susceptibility toward UV-induced carcinogenesis.  相似文献   

15.
16.
17.
Dinuclear azole-bridged Pt compounds bind to DNA helices, forming intrastrand crosslinks between adjacent guanines in a similar way to cisplatin. Their cytotoxic profile is, however, different from that of first and second generation Pt drugs in that they lack cross resistance in cisplatin-resistant cell lines. In contrast to cisplatin, which induces a large kink in DNA duplex, structural NMR studies and molecular dynamics simulations have shown that azole-bridged diplatinum compounds induce only small structural changes in double-stranded DNA. These structural differences have been invoked to explain the different cytotoxic profile of these compounds. Here, we show that in addition to the small structural changes in DNA, dinuclear Pt compounds also affect DNA minor groove flexibility in a different way than cisplatin. Free-energy calculations on azole-bridged diplatinum DNA adducts reveal that opening of the minor groove requires a higher free-energy cost (DeltaG ~ 7-15 kcal/mol) than in the corresponding cisplatin-DNA adduct (DeltaG ~ 0 kcal/mol). This could prevent minor groove binding proteins from binding to diplatinum-DNA adducts thus leading to a different cellular response than cisplatin and possibly decreasing the activity of excision repair enzymes. Although the development of drug resistance is a highly complex mechanism, our findings provide an additional rationale for the improved cytotoxic activity of these compounds in cell lines resistant to cisplatin.  相似文献   

18.
UV protective effects of DNA repair enzymes and RNA lotion   总被引:1,自引:0,他引:1  
Solar UV radiation is known to cause immune suppression, believed to be a critical factor in cutaneous carcinogenesis. Although the mechanism is not entirely understood, DNA damage is clearly involved. Sunscreens function by attenuating the UV radiation that reaches the epidermis. However, once DNA damage ensues, repair mechanisms become essential for prevention of malignant transformation. DNA repair enzymes have shown efficacy in reducing cutaneous neoplasms among xeroderma pigmentosum patients. In vitro studies suggest that RNA fragments increase the resistance of human keratinocytes to UVB damage and enhance DNA repair but in vivo data are lacking. This study aimed to determine the effect of topical formulations containing either DNA repair enzymes ( Micrococcus luteus ) or RNA fragments (UVC-irradiated rabbit globin mRNA) on UV-induced local contact hypersensitivity (CHS) suppression in humans as measured in vivo using the contact allergen dinitrochlorobenzene. Immunohistochemistry was also employed in skin biopsies to evaluate the level of thymine dimers after UV. Eighty volunteers completed the CHS portion. A single 0.75 minimum erythema dose (MED) simulated solar radiation exposure resulted in 64% CHS suppression in unprotected subjects compared with unirradiated sensitized controls. In contrast, UV-induced CHS suppression was reduced to 19% with DNA repair enzymes, and 7% with RNA fragments. Sun protection factor (SPF) testing revealed an SPF of 1 for both formulations, indicating that the observed immune protection cannot be attributed to sunscreen effects. Biopsies from an additional nine volunteers showed an 18% decrease in thymine dimers by both DNA repair enzymes and RNA fragments, relative to unprotected UV-irradiated skin. These results suggest that RNA fragments may be useful as a photoprotective agent with in vivo effects comparable to DNA repair enzymes.  相似文献   

19.
DNA repair inhibition and cancer therapy.   总被引:2,自引:0,他引:2  
The DNA repair process in mammalian cells is a multi-pathway mechanism that protects cells from the plethora of DNA damaging agents that are known to attack nuclear DNA. Moreover, the majority of current anticancer therapies (e.g. ionising radiation and chemotoxic therapies) rely on this ability to create DNA lesions, leading to apoptosis/cell death. A cells natural ability to repair such DNA damage is a major cause of resistance to these existing antitumour agents. It seems logical, therefore, that by modulating these repair mechanisms, greater killing effect to anticancer agents would occur. Experimental data support this, either through knockout studies or by the use of pharmacological inhibitors which target some of the key regulatory proteins involved in the DNA repair process. Several of these key DNA repair proteins which are actively under investigation as novel sites for intervention in cancer biology are discussed.  相似文献   

20.
Abstract— The time sequence of events during excision repair of DNA in Tetrahymena pyriformis was investigated after sublethal dose of u.v. radiation. Buoyant-density analysis of the DNA from repairing cells grown in medium containing 5'-bromodeoxyuridine makes it possible to distinguish repair synthesis from normal synthesis. Analysis of the DNA synthesized at various times after irradiation clearly indicates that repair synthesis starts very quickly after irradiation and is completed within 3 to 4 hr. Immediately after irradiation, normal DNA synthesis is greatly depressed but gradually resumes until it predominates after 3 to 4 hr. The molecular weight of DNA strands is reduced and the net rate of DNA synthesis is depressed immediately after irradiation. Both of these parameters are restored to their pre-irradiation values by 3 to 4 hr after irradiation. During the repair period the majority of the pyrimidine dimers are removed. All of the data indicate that repair begins immediately after irradiation and is completed in 3 to 4 hr (about two thirds of a generation period).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号