首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of disturbances in a three-dimensional boundary layer on a swept wing model is studied both under natural conditions and for artificial excitation of traveling waves by an acoustic field. It is found that steady-state streamwise structures are formed in the three-dimensional boundary layer; under natural conditions a wave packet leading to turbulence is detected. When the flow is exposed to the action of an acoustic field at a frequency from the wave packet, disturbances whose velocity along the streamwise structures is equal to 0.55 of the oncoming flow velocity are formed, while the laminar-turbulent transition is displaced upstream.  相似文献   

2.
张鑫  王勋年 《力学学报》2023,55(2):285-298
正弦交流介质阻挡放电等离子体流动控制技术是基于等离子体激励的主动流动控制技术,具有响应时间短、结构简单、能耗低、不需要额外气源装置等优点,在飞行器增升减阻、抑振降噪、助燃防冰等方面具有广阔的应用前景.针对“激励器消耗的大部分能量尚未被挖掘利用、诱导流场的完整演化过程尚未完全掌握、诱导流场的演化机制尚不明确”这三方面问题,本文首先从激励器诱导流场的空间结构、时空演化过程、演化机制三个方面回顾总结了激励器诱导流场的研究进展.在诱导流场空间结构方面,发现了高电压激励下诱导射流的湍流特性,辨析了壁面拟序结构与无量纲激励参数之间的关联机制;从激励器诱导声能方面挖掘出了激励器潜在的能量,发现了“等离子体诱导超声波与诱导声流”的新现象,提出了声激励机制;在时空演化过程方面,阐明了激励器诱导流场从薄型壁射流发展为“拱形”射流、再演变为启动涡,最终形成准定常射流的完整演化过程;在演化机制方面,结合声学特性提出了以“升推”为主的诱导流场演化机制.其次,围绕激励器诱导流场,进一步凝练出下一步研究重点,为突破等离子体流动控制技术瓶颈,打通“概念创新—技术突破—演示验证”的创新链路,实现工程应用提供支撑.  相似文献   

3.
This paper experimentally investigates the measurement of acoustic streaming in a 7 m long-standing wave air-filled acoustic resonator. One can describe the acoustic streaming as a second-order steady flow, which is superimposed on the dominant acoustic velocity. It is induced by the nonlinearities of the acoustic propagation inside the resonator. The exploration of the acoustic velocity field by the synchronized PIV (stands for Particle Image Velocimetry) technique enabled to highlight and quantify these secondary flows. The PIV measurements of the acoustic velocity fields at different phases over the excitation signal period gave information on streaming profiles and the post processing applied allowed plotting the acoustic velocity over time. These results were compared to the outcome of a 2D numerical study performed with the commercial software Fluent, where good agreements were found. It indicates the ability of this method to accurately measure second order steady flow variations of the acoustic velocity field.  相似文献   

4.
空腔结构广泛应用于航空航天飞行器部件及地面交通工具中,其复杂的流声特性是相关工程设计中必须考虑的关键问题.空腔流动中的流声相互作用是空腔自持振荡的重要过程,准确识别并解耦空腔内的流体动力学模态和声模态,是深入理解空腔流声相互作用和能量转化机制的关键.通过直接求解二维Navier-Stokes方程数值模拟来流马赫数Ma=...  相似文献   

5.
An implicit spatial differencing technique with fourth-order accuracy has been developed based on the Pade compact scheme. A dispersion-relation-preserving concept has been incorporated into the numerical scheme. Two-dimensional Euler computation of a spatially developing free shear flow with and without external excitation has been performed to demonstrate the capability of the numerical scheme developed. Results are in good agreement with theory and experimental observation regarding the growth rate of the fluctuating velocity, the convective velocity and the vortex-pairing process. The far-field sound pressure generated by the computed shear flow solution using Lighthill's acoustic analogy shows a strong directivity with a zone of silence at the flow angle.  相似文献   

6.
We present a finite element (FE) formulation of Lighthill's acoustic analogy for the hybrid computation of noise generated by turbulent flows. In the present approach, the flow field is computed using large eddy simulation and scale adaptive simulation turbulence models. The acoustic propagation is obtained by solving the variational formulation of Lighthill's acoustic analogy with the FE method. In order to preserve the acoustic energy, we compute the inhomogeneous part of Lighthill's wave equation by applying the FE formulation on the fine flow grid. The resulting acoustic nodal loads are then conservatively interpolated to the coarser acoustic grid. Subsequently, the radiated acoustic field can be solved in both time and frequency domains. In the latter case, an enhanced perfectly matched layer technique is employed, allowing one to truncate the computational domain in the acoustic near field, without compromising the numerical solution. Our hybrid approach is validated by comparing the numerical results of the acoustic field induced by a corotating vortex pair with the corresponding analytical solution. To demonstrate the applicability of our scheme, we present full 3D numerical results for the computed acoustic field generated by the turbulent flow around square cylinder geometries. The sound pressure levels obtained compare well with measured values. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
An experimental Investigation was made of the flow in a laminar boundary layer in a region of adverse pressure gradient in the presence of an acoustic field. There is a significant rearrangement of the laminar flow under the influence of the sound. The strong influence of the sound on the average flow is due to the excitation of vorticity perturbations, but this does not completely explain the phenomenon.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 48–52, March–April, 1983.  相似文献   

8.
Unsteady vortex flow around a fixed solid body in a viscous incompressible fluid is investigated for the case where the velocity field is assumed to vanish at infinity. Consideration of the asymptotic pressure field far from the body leads to a new formula for the force acting on the body, which is given by a volume integral whose integrand is linear with respect to the vorticity and does not include the velocity. This is facilitated by using a renormalized Green's function introduced by Howe. The formula offers an interesting interpretation for the force in the case of inviscid vortex rings moving near the body: that is, the force is proportional to the rate of change of volume flux through the rings of an imaginary potential flow around the body. The relation of the present subject to the excitation of acoustic waves by vortex motion moving near a compact body is considered.  相似文献   

9.
 We propose in this work to characterize the unsteady behavior of a flow generated by wall injection and encountering an obstacle. This sutdy concerns the prediction of the stability of segmented solid propellant rocket motors. The simulation of such a system is studied in cold flow, which makes it possible to analyze the basic phenomena and the energy transfer mechanisms of the flow. The results obtained allow the identification of the vortex structures by visualization inside a shear layer created at the top of an obstacle. The analysis of the pressure field shows that the dynamic parameters (mass flow rate or flow velocity) generate a phenomenon of selective excitation and of longitudinal acoustic modes amplification, which is accompanied by an energy transfer between modes. Received: 30 October 1997 / Accepted: 8 June 1998  相似文献   

10.
 Removal of soot particles from a static chamber by an intense acoustic field is investigated. Combustion of a solid fuel fills a rectangular chamber with small soot particles, which sediment very slowly. The chamber is then irradiated by an intense acoustic source to produce a three dimensional standing wave field in the chamber. The acoustic excitation causes the soot particles to agglomerate, forming larger particles which sediment faster from the system. The soot also forms 1–2 cm disks, with axes parallel to the axis of the acoustic source, which are levitated by the sound field at half-wavelength spacing within the chamber. Laser extinction measurements are made to determine soot volume fractions as a function of exposure time within the chamber. The volume fraction is reduced over time by sedimentation and by particle migration to the disks. The soot disks are considered to be a novel mechanism for particle removal from the air stream, and this mechanism has been dubbed acoustic filtration. An experimental method is developed for comparing the rate of soot removal by sedimentation alone with the rate of soot removal by sedimentation and acoustic filtration. Results show that acoustic filtration increases the rate of soot removal by a factor of two over acoustically-induced sedimentation alone. Received: 26 August 1996/Accepted: 31 March 1997  相似文献   

11.
The self-excitation mechanism of the acoustic diametral modes of an axisymmetric internal cavity–duct system is studied for a Mach number range up to 0.4. The effect of cavity dimensions on the excitation mechanism is investigated experimentally and numerically. Experiments are conducted on three cavity depths and six cavity lengths for each depth. Numerical simulations of the mode shapes are also performed to determine the effect of cavity dimensions on the particle velocity field of the diametral modes. For all the tested configurations, the diametral modes are strongly excited at relatively low Mach numbers (as low as 0.1). The pulsation amplitude at resonance is found to increase as the cavity becomes shorter or deeper, relative to the main pipe diameter. The test results provide new insights into the excitation mechanism of diametral modes, the effect of the cavity length to depth ratio on the Strouhal numbers of acoustic resonances caused by various shear-layer modes of the cavity, and into the effect of the particle velocity field of the acoustic modes on the mode selectivity mechanism which determines the dominant acoustic mode during resonance.  相似文献   

12.
An experimental investigation was carried out on the flow over a partially grooved circular cylinder over a Reynolds number range of 3 × 104 to 1.22 × 105 with and without acoustic excitation. Without excitation the flow over the smooth half of the cylinder was observed to shift to higher subcritical regime. The flow over the groove half, however, is shifted to supercritical or transcritical flow regime. With excitation, on the smooth half it is the separated laminar shear layer which locks in with the excitation frequency, resulting in the shift from subcritical to supercritical or transcritical regimes. On the groove half excitation is not effective for the flow within the transcritical regime. With excitation, the lift is found to reverse its direction while the drag is nearly the same.This study is partly supported by a grant from the Committee of Research and Conference Grants. The University of Hong Kong  相似文献   

13.
The effects of jet pulsation on flow field and quasi wall shear stress of an impingement configuration were investigated experimentally. The excitation Strouhal number and amplitude were varied as the most influential parameters. A line-array with three submerged air jets, and a confining plate were used. The flow field analysis by means of time resolved particle image velocimetry shows that the controlled excitation can considerably affect the near-field flow of an impinging jet array. These effects are visualized as organization of the coherent flow structures. Augmentation of the Kelvin–Helmholtz vortices in the jet shear layer depends on the Strouhal number and pulsation magnitude and can be associated with pairing of small scale vortices in the jet. A total maximum of vortex strength was observed when exciting with Sr = 0.82 and coincident high amplitudes.Time resolved interaction between impinging vortices and impingement plate boundary layer due to jet excitation was verified by using an array of 5 μm surface hot wires. Corresponding to the global flow field modification due to periodic jet pulsation, the impact of the vortex rings on the wall boundary layer is highly influenced by the above mentioned excitation parameters and reaches a maximum at Sr = 0.82.  相似文献   

14.
Characteristic flow modes, flow evolution processes, jet spread width, turbulence properties, and dispersion characteristics of swirling double-concentric jets were studied experimentally. Jet pulsations were induced by means of acoustic excitation. Streak pictures of smoke flow patterns, illuminated by a laser-light sheet, were recorded by a high-speed digital camera. A hot-wire anemometer was used to digitize instantaneous velocity instabilities in the flow. Jet spread width was obtained through a binary edge identification technique. Tracer-gas concentrations were measured for information on jet dispersions. Two characteristic flow patterns were observed: (1) synchronized vortex rings appeared in the low excitation intensity regime (the excitation intensity less than one) and (2) synchronized puffing turbulent jets appeared in the high excitation intensity regime (the excitation intensity greater than one). In the high excitation intensity regime, the “suction back” phenomenon occurred and therefore induced in-tube mixing. The jet spread width and turbulent fluctuation intensity exhibited particularly large values in the high excitation intensity regime at the excitation Strouhal numbers smaller than 0.85. At the excitation Strouhal numbers >0.85, the high-frequency effect caused significant decay of jet breakup and dispersion—the jet spread width and fluctuation intensity decreased sharply and may, at very high Strouhal numbers, asymptotically approach values almost the same as the values associated with unexcited jets. Exciting the jets at the high excitation intensity regime, the effects of puffing motion and in-tube mixing caused breakup of the jet in the near field and therefore resulted in a small Lagrangian integral time and small length scales of fluctuating eddies. This effect, in turn, caused drastic dispersion of the central jet fluids. It is possible that the excited jets can attain 90 % more improvements than the unexcited jets. We provide a domain regarding excitation intensity and Strouhal number to facilitate identification of characteristic flow modes.  相似文献   

15.
An analysis is made of the nonlinear interactions between flow in the subglottal vocal tract and glottis, sound waves in the subglottal system and a mechanical model of the vocal folds. The mean flow through the system is produced by a nominally steady contraction of the lungs, and mechanical experiments frequently involve a ‘lung cavity’ coupled to an experimental subglottal tube of arbitrary or ill-defined effective length L, on the basis that the actual value of L has little or no influence on excitation of the vocal folds. A simple, self-exciting single-mass mathematical model of the vocal folds is used to investigate the sound generated within the subglottal domain and the unsteady volume flux from the glottis for experiments where it is required to suppress feedback of sound from the supraglottal vocal tract. In experiments where the assumed absorption of sound within the sponge-like interior of the lungs is small, the influence of changes in L can be very significant: when the subglottal tube behaves as an open-ended resonator (when L is as large as half the acoustic wavelength) there is predicted to be a mild increase in volume flux magnitude and a small change in waveform. However, the strong appearance of second harmonics of the acoustic field is predicted at intermediate lengths, when L is roughly one quarter of the acoustic wavelength. In cases of large lung damping, however, only modest changes in the volume flux are predicted to occur with variations in L.  相似文献   

16.
The results of an experimental investigation of the acoustic field produced by turbulent subsonic jets under internal acoustic excitation are presented. It is shown that under the action of saw-tooth finite-amplitude waves the turbulent jets can radiate Mach waves into the ambient medium due to compact acoustic disturbances traveling along the jet at a velocity greater than the speed of sound in the surrounding space.Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, 2004, pp. 153–158. Original Russian Text Copyright © 2004 by Pimshtein.  相似文献   

17.
针对阶梯圆柱形耦合声场建模问题,提出基于特征正交-里兹能量原理的声学建模方法.该方法利用二维特征正交多项式和周向傅里叶级数表征阶梯圆柱形耦合声场子分段的声压函数,从能量角度考虑邻近子声场间声学连续性条件,并结合里兹法获得耦合声场的声学特性.基于本建模方法对不同分段的耦合声场开展声学特性分析,结果表明,本建模方法在保证计算准确性的基础上有效提高了计算效率,且对任意阶梯分段的圆柱形耦合声场普遍适用;圆柱形耦合声场固有频率会随着腔体外径增大而普遍增大,而腔深的影响规律相反;降低声学边界阻抗可抑制声学响应幅值,为此类声场的噪声控制提供了设计依据.  相似文献   

18.
In this study, an integrated flow simulation and aeroacoustics prediction methodology is applied to testing a sound control technique using porous inserts in an open cavity. Large eddy simulation (LES) combined with a three-dimensional Ffowcs Williams–Hawkings (FW–H) acoustic analogy is employed to predict the flow field, the acoustic sources and the sound radiation. The Darcy pressure – velocity law is applied to conceptually mimic the effect of porous media placed on the cavity floor and/or rear wall. Consequently, flow in the cavity could locally move in or out through these porous walls, depending on the local pressure differences. LES with “standard” subgrid-scale models for compressible flow is carried out to simulate the flow field covering the sound source and near fields, and the fully three-dimensional FW–H acoustic analogy is used to predict the sound field. The numerical results show that applying the conceptual porous media on cavity floor and/or rear wall could decrease the pressure fluctuations in the cavity and the sound pressure level in the far field. The amplitudes of the dominant oscillations (Rossiter modes) are suppressed and their frequencies are slightly modified. The dominant sound source is the transverse dipole term, which is significantly reduced due to the porous walls. As a result, the sound pressure in the far field is also suppressed. The preliminary study reveals that using porous-inserts is a promising technology for flow and sound radiation control.  相似文献   

19.
In this paper, the flow/acoustics splitting method for predicting flow‐generated noise is further developed by introducing high‐order finite difference schemes. The splitting method consists of dividing the acoustic problem into a viscous incompressible flow part and an inviscid acoustic part. The incompressible flow equations are solved by a second‐order finite volume code EllipSys2D/3D. The acoustic field is obtained by solving a set of acoustic perturbation equations forced by flow quantities. The incompressible pressure and velocity form the input to the acoustic equations. The present work is an extension of our acoustics solver, with the introduction of high‐order schemes for spatial discretization and a Runge–Kutta scheme for time integration. To achieve low dissipation and dispersion errors, either Dispersion‐Relation‐Preserving (DRP) schemes or optimized compact finite difference schemes are used for the spatial discretizations. Applications and validations of the new acoustics solver are presented for benchmark aeroacoustic problems and for flow over an NACA 0012 airfoil. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
The flow and acoustic fields of subsonic turbulent hot jets exhausting from three divergent nozzles at a Mach number M=0.12 based on the nozzle exit velocity are conducted using a hybrid CFD-CAA method. The flow field is computed by highly resolved large-eddy simulations (LES) and the acoustic field is computed by solving the acoustic perturbation equations (APE) whose acoustic source terms are determined by the LES. The LES of the computational domain includes the interior of the nozzle geometry. Synthetic turbulence is prescribed at the inlet of the nozzle to mimic the exit conditions downstream of the last turbine stage. The LES is based on hierarchically refined Cartesian meshes, where the nozzle wall boundaries are resolved by a conservative cut-cell method. The APE solution is determined on a block structured mesh. Three nozzle geometries of increasing complexity are considered, i.e., the flow and acoustic fields of a clean geometry without any built-in components, a nozzle with a centerbody, and a nozzle with a centerbody plus struts are computed. Spectral distributions of the LES based turbulent fluctuated quantities inside the nozzle and further downstream are analyzed in detail. The noise sources in the near field are noticeably influenced by the nozzle built-in components. The centerbody nozzle increases the overall sound pressure level (OASPL) in the near field with respect to the clean nozzle and the centerbody-plus-strut nozzle reduces it compared to the centerbody nozzle due to the increased turbulent mixing. The centerbody perturbed nozzle configurations generate a remarkable spectral peak at S t=0.56 which also occurs in the APE findings in the near field region. This tone is generated by large scale vortical structures shed from the centerbody. The analysis of the individual noise sources shows that the entropy term possesses the highest acoustic contribution in the sideline direction whereas the vortex sound source dominates the downstream acoustics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号