首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The right-hand sides of a system of ordinary differential equations may be discontinuous on a certain surface. If a trajectory crossing this surface shall be computed by a one-step method, then a particular numerical analysis is necessary in a neighbourhood of the point of intersection. Such an analysis is presented in this paper. It shows that one can obtain any desired order of convergence if the method has an adequate order of consistency. Moreover, an asymptotic error theory is developed to justify Richardson extrapolation. A general one-step method is constructed satisfying the conditions of the preceding theory. Finally, a simplified Newton iteration scheme is used to implement this method.  相似文献   

2.
Summary In this paper, a general class ofk-step methods for the numerical solution of ordinary differential equations is discussed. It is shown that methods with order of consistencyq have order of convergence (q+1) if a very simple condition is satisfied. This result gives a new aspect to previous results of Spijker; it also serves as a starting point for a new theory of cyclick-step methods, completing an approach of Donelson and Hansen. It facilitates the practical determination of high-order cyclick-step methods, especially of stiffly stable,k-step methods.  相似文献   

3.
Summary High order implicit integration formulae with a large region of absolute stability are developed for the approximate numerical integration of both stiff and non-stiff systems of ordinary differential equations. The algorithms derived behave essentially like one step methods and are demonstrated by direct application to certain particular examples.  相似文献   

4.
Summary Motivated by the consideration of Runge-Kutta formulas for partitioned systems, the theory of P-series is studied. This theory yields the general structure of the order conditions for numerical methods for partitioned systems, and in addition for Nyström methods fory=f(y,y), for Rosenbrock-type methods with inexact Jacobian (W-methods). It is a direct generalization of the theory of Butcher series [7, 8]. In a later publication, the theory ofP-series will be used for the derivation of order conditions for Runge-Kutta-type methods for Volterra integral equations [1].  相似文献   

5.
Adams methods for neutral functional differential equations   总被引:1,自引:0,他引:1  
Summary In this paper Adams type methods for the special case of neutral functional differential equations are examined. It is shown thatk-step methods maintain orderk+1 for sufficiently small step size in a sufficiently smooth situation. However, when these methods are applied to an equation with a non-smooth solution the order of convergence is only one. Some computational considerations are given and numerical experiments are presented.  相似文献   

6.
This paper deals with adapting Runge-Kutta methods to differential equations with a lagging argument. A new interpolation procedure is introduced which leads to numerical processes that satisfy an important asymptotic stability condition related to the class of testproblemsU(t)=U(t)+U(t–) with , C, Re()<–||, and >0. Ifc i denotes theith abscissa of a given Runge-Kutta method, then in thenth stept n–1t n :=t n–1+h of the numerical process our interpolation procedure computes an approximation toU(t n–1+c i h–) from approximations that have already been generated by the process at pointst j–1+c i h(j=1,2,3,...). For two of these new processes and a standard process we shall consider the convergence behaviour in an actual application to a given, stiff problem.  相似文献   

7.
We use the concept of order stars (see [1]) to prove and generalize a recent result of Dahlquist [2] on unconditionally stable linear multistep methods for second order differential equations. Furthermore a result of Lambert-Watson [3] is generalized to the multistage case. Finally we present unconditionally stable Nyström methods of order 2s (s=1,2, ...) and an unconditionally stable modification of Numerov's method. The starting point of this paper was a discussion with G. Wanner and S.P. Nørsett. The author is very grateful to them.  相似文献   

8.
Summary When variable stepsize variable formula methods (VSVFM's) are used in the solution of systems of first order differential equations instability arises sometimes. Therefore it is important to find VSVFM's whose zerostability properties are not affected by the choice of both the stepsize and the formula. The Adams VSVFM's are such methods. In this work a more general class of methods which contains the Adams VSVFM's is discussed and it is proved that the zero-stability of the class is not affected by the choice of the stepsize and of the formula.  相似文献   

9.
Partitioned adaptive Runge-Kutta methods and their stability   总被引:4,自引:0,他引:4  
Summary This paper deals with the solution of partitioned systems of nonlinear stiff differential equations. Given a differential system, the user may specify some equations to be stiff and others to be nonstiff. For the numerical solution of such a system partitioned adaptive Runge-Kutta methods are studied. Nonstiff equations are integrated by an explicit Runge-Kutta method while an adaptive Runge-Kutta method is used for the stiff part of the system.The paper discusses numerical stability and contractivity as well as the implementation and usage of such compound methods. Test results for three partitioned stiff initial value problems for different tolerances are presented.  相似文献   

10.
Summary Two Rosenbrock-Wanner type methods for the numerical treatment of differential-algebraic equations are presented. Both methods possess a stepsize control and an index-1 monitor. The first method DAE34 is of order (3)4 and uses a full semi-implicit Rosenbrock-Wanner scheme. The second method RKF4DA is derived from the Runge-Kutta-Fehlberg 4(5)-pair, where a semi-implicit Rosenbrock-Wanner method is embedded, in order to solve the nonlinear equations. The performance of both methods is discussed in artificial test problems and in technical applications.  相似文献   

11.
Summary This paper deals with the computation of branch points in ordinary differential equations. A direct numerical method is presented which requires the solution of only one boundary value problem. The method handles the general case of branching from a nontrivial solution which is a-prioriunknown. A testfunction is proposed which may indicate branching if used in continuation methods. Several real-life problems demonstrate the procedure.  相似文献   

12.
Summary This paper deals with the convergence of nonstationary quasilinear multistep methods with varying step, used for the numerical integration of Volterra functional differential equations. A Perron type condition (appearing in the differential equations theory) is imposed on the increment function. This gives a generalization of some results of Tavernini ([19–21]).  相似文献   

13.
Summary It is shown that Liapunov functions may be used to obtain error bounds for approximate solutions of systems of ordinary differential equations. These error bounds may reflect the behaviour of the error more accurately than other bounds.  相似文献   

14.
Summary Burrage and Butcher [1, 2] and Crouzeix [4] introduced for Runge-Kutta methods the concepts ofB-stability,BN-stability and algebraic stability. In this paper we prove that for any irreducible Runge-Kutta method these three stability concepts are equivalent.Chapters 1–3 of this article have been written by the second author, whereas chapter 4 has been written by the first author  相似文献   

15.
Summary Retarded initial value problems are routinely replaced by an initial value problem of ordinary differential equations along with an appropriate interpolation scheme. Hence one can control the global error of the modified problem but not directly the actual global error of the original problem. In this paper we give an estimate for the actual global error in terms of controllable quantities. Further we show that the notion of local error as inherited from the theory of ordinary differential equations must be generalized for retarded problems. Along with the new definition we are led to developing a reliable basis for a step selection scheme.  相似文献   

16.
Summary For the numerical solution of initial value problems of ordinary differential equations partitioned adaptive Runge-Kutta methods are studied. These methods consist of an adaptive Runge-Kutta methods for the treatment of a stiff system and a corresponding explicit Runge-Kutta method for a nonstiff system. First we modify the theory of Butcher series for partitioned adaptive Runge-Kutta methods. We show that for any explicit Runge-Kutta method there exists a translation invariant partitoned adaptive Runge-Kutta method of the same order. Secondly we derive a special translaton invariant partitioned adaptive Runge-Kutta method of order 3. An automatic stiffness detection and a stepsize control basing on Richardson-extrapolation are performed. Extensive tests and comparisons with the partitioned RKF4RW-algorithm from Rentrop [16] and the partitioned algorithm LSODA from Hindmarsh [9] and Petzold [15] show that the partitoned adaptive Runge-Kutta algorithm works reliable and gives good numericals results. Furthermore these tests show that the automatic stiffness detection in this algorithm is effective.  相似文献   

17.
Summary This paper deals with the solution of nonlinear stiff ordinary differential equations. The methods derived here are of Rosenbrock-type. This has the advantage that they areA-stable (or stiffly stable) and nevertheless do not require the solution of nonlinear systems of equations. We derive methods of orders 5 and 6 which require one evaluation of the Jacobian and oneLU decomposition per step. We have written programs for these methods which use Richardson extrapolation for the step size control and give numerical results.  相似文献   

18.
Summary Asymptotic expansions of the global error of numerical methods are well-understood, if the differential equation is non-stiff. This paper is concerned with such expansions for the implicit Euler method, the linearly implicit Euler method and the linearly implicit mid-point rule, when they are applied tostiff differential equations. In this case perturbation terms are present, whose dominant one is given explicitly. This permits us to better understand the behaviour ofextrapolation methods at stiff differential equations. Numerical examples, supporting the theoretical results, are included.  相似文献   

19.
Gekeler  E.  Widmann  R. 《Numerische Mathematik》1986,50(2):183-203
Summary Runge-Kutta methods have been generalized to procedures with higher derivatives of the right side ofy=f(t,y) e.g. by Fehlberg 1964 and Kastlunger and Wanner 1972. In the present work some sufficient conditions for the order of consistence are derived for these methods using partially the degree of the corresponding numerical integration formulas. In particular, methods of Gauß, Radau, and Lobatto type are generalized to methods with higher derivatives and their maximum order property is proved. The applied technique was developed by Crouzeix 1975 for classical Runge-Kutta methods. Examples of simple explicit and semi-implicit methods are given up to order 7 and 6 respectively.  相似文献   

20.
Summary Brown [1] introducedk-step methods usingl derivatives. Necessary and sufficient conditions forA 0-stability and stiff stability of these methods are given. These conditions are used to investigate for whichk andl the methods areA 0-stable. It is seen that for allk andl withk1.5 (l+1) the methods areA 0-stable and stiffly stable. This result is conservative and can be improved forl sufficiently large. For smallk andl A 0-stability has been determined numerically by implementing the necessary and sufficient condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号