首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Er3+-Yb3+ codoped Al2O3 nanoparticles with an average particle size of about 50 nm have been synthesized by an arc discharge synthesis method. The green and red up-conversion emissions centered at about 526, 547 and 677 nm, corresponding respectively to the 2H11/24I15/2, 4S3/24I15/2 and 4F9/24I15/2 transitions of Er3+, were detected by a 978-nm semiconductor laser diode excitation. The Annealing has evident effect on the up-conversion emissions of the samples: The red up-conversion emission is noticeable before annealing; however, the green up-conversion emission becomes predominant after annealing. The mixture of (Er,Yb)3Al5O12 and α-(Al,Er,Yb)2O3 phases is more favorable for green up-conversion emissions due to an enhancement of the ESA (I) of 4I11/2+a photon→4F7/2 and ET (III) of 2F5/2(Yb3+)+4I11/2(Er3+)→2F7/2(Yb3+)+4F7/2(Er3+) processes. The two-photon absorption up-conversion process is involved in the green and red up-conversion emissions. The results have proved that arc discharge synthesis is a new promising preparation technology for optical materials. Supported by National Natural Science Foundation of China (Grant No. 10804015), the Scientific Research Foundation for Doctor of Liaoning Province (Grant No. 20071095), and the Educational Committee Foundation of Liaoning Province (Grant No. 2008123)  相似文献   

2.
We have grown crystals Na0.4Y0.6F2.2:Ho3+ (NYF:Ho3+) by the Bridgman-Stockbarger method. The optical spectra and luminescence kinetics of NYF:Ho3+ crystals have been studied. Based on the analysis of low-temperature absorption spectra, we determine the structure of the Stark splitting of holmium levels in NYF:Ho3+ crystals. From absorption spectra examined at T = 300 K, we calculate absorption cross-section spectra and oscillator strengths of transitions from the ground state of holmium to excited multiplets. We show that the absorption spectra of NYF:Ho3+ crystals consist of broad bands that lie in the UV, visible, and near-IR ranges. The most intense bands are observed in the visible range, they correspond to transitions 5 I 8 → (5 F 1, 5 G 6) and 5 I 8 → (5 F 4, 5 S 2), and their maximal absorption cross sections are σabsmax (λ = 450.3 nm) = 1.16 × 10−20 cm2 and σabsmax (λ = 535.1 nm) = 0.9 × 10−20 cm2. The intensity parameters Ω t have been calculated by the Judd-Ofelt method taking into account 10, 12, and 20 transitions from the 5 I 8 ground state to excited multiplets. We show that, with an increasing number of transitions taken into account in the calculation, the parameters Ω t somewhat increase. For 20 transitions, we have obtained the following intensity parameters: Ω2 = 0.97 × 10−20, Ω4 = 1.74 × 10−20, and Ω6 = 1.15 × 10−20 cm2. With these parameters, we have calculated the probabilities of radiative transitions, the radiative lifetimes, and the branching ratios. The rates of multiphoton nonradiative transitions have been estimated. The luminescence decay kinetics from excited holmium levels 5 F 3 (5 F 4, 5 S 2) and 5 F 5 have been studied upon selective excitation in the range of 490 nm, and the lifetimes of these levels have been experimentally determined. We find that the calculated and experimental rates of radiative and nonradiative relaxation from excited holmium levels agree well with each other. We show that, upon pumping in the range of 490 nm, the multiplet (5 F 4, 5 S 2) is populated as a result of the radiative and nonradiative excitation relaxation from the 5 F 3 level, while the lower-lying 5 F 5 level is populated due to direct radiative transitions 5 F 3, 25 F 5, obviating the cascade scheme 5 F 3 → (5 F 4, 5 S 2) ↝ 5 F 5. We conclude that NYF:Ho3+ crystals are processable; admit doping by holmium in high concentrations (up to 100%); and, with respect to all their radiative characteristics, can be considered as potential active media for solid-state continuously tunable lasers in the IR and visible ranges.  相似文献   

3.
We have studied the effect of doping with Eu2+ and Ce3+ ions on the photoluminescence (PL) of BaGa2Se4 crystals in the temperature range 77–300 K. We have established that the broad bands with maxima at wavelengths 456 nm and 506 nm observed in the photoluminescence spectra of BaGa2Se4:Ce3+ crystals are due to intracenter transitions 5d → 2F7/2 and 5d →2F5/2 of the Ce3+ ions, while the broad photoluminescence band with maximum at 521 nm in the spectrum of BaGa2Se4:Eu2+ is associated with 4f6 5d → 4f7 (8S7/2) transitions of the Eu2+ ion. We show that in BaGa2Se4:Eu2+,Ce3+ crystals, excitation energy is transferred from the Ce3+ ions to the Eu2+ ions.  相似文献   

4.
Single crystals of gadolinium orthosilicate Gd2SiO5 containing 0.5 at% and 5 at% of Sm3+ were grown by the Czochralski method. Optical absorption spectra, luminescence spectra and luminescence decay curves were recorded for these systems at 10 K and at room temperature. Comparison of optical spectra recorded in polarized light revealed that the anisotropy of this optically biaxial host affects the intensity distribution within absorption and emission bands related to transitions between multiplets rather than the overall band intensity. It has been found that among four bands of luminescence related to the 4G5/26HJ (J=5/2–11/2) transitions of Sm3+ in the visible and near infrared region the 4G5/26H7/2 one has the highest intensity with a peak emission cross section of 3.54×10−21 cm2 at 601 nm for light polarized parallel to the crystallographic axis c of the crystal. The luminescence decay curve recorded for Gd2SiO5:0.5 at% Sm3+ follows a single exponential time dependence with a lifetime 1.74 ms, in good agreement with the 4G5/2 radiative lifetime τ rad=1.78 ms calculated in the framework of Judd-Ofelt theory. Considerably faster and non-exponential luminescence decay recorded for Gd2SiO5:5 at% Sm3+ sample was fitted to that predicted by the Inokuti-Hirayama theory yielding the microparameter of Sm3+–Sm3+ energy transfer C da=1.264×10−52 cm6×s−1.  相似文献   

5.
The preparation of pyridine functionalized TbF3 nanoparticles are described in this report. Synthesized nanoparticles were characterized using the TEM, UV/Vis, FTIR and photoluminescence spectroscopy. TEM micrograph reveals the nanorod shaped, uniform in size with a particles size in the range of 20–30 nm. FTIR spectrum shown characteristic absorption bands of pyridine and a small intensity band at 411 cm−1 corresponding metal nitrogen ν(Tb–N) bonding. Uv-vis spectrum shown the characteristic absorption transitions of Tb3+ ion. A strong emission transition at 540 nm (5D47F5) was observed on excite by visible light at 414 nm.  相似文献   

6.
The thermal and dielectric properties of the (NH4)2NbOF5 oxyfluoride have been investigated. It has been established that the structural phase transitions Cmc21C2 → Ia observed at the temperatures T 1 = 258.0 K and T 2 = 218.9 K exhibit a nonferroelectric nature. The hydrostatic pressure, which stabilizes the initial phase and destabilizes the low-temperature phase, hardly affects the temperature range of stability of the intermediate phase. The model of sequential ordering of the structural elements due to phase transitions has been analyzed using experimental data on the entropies of the phase transitions.  相似文献   

7.
Structures of H2CN and CH2CN molecules are similar to that of H2CO molecule. The H2CO has shown anomalous absorption for its transition 111–110 at 4.8 GHz in a number of cool molecular clouds. Though the molecules H2CN and CH2CN have been identified in TMC-1 and Sgr B2 through some transitions in ortho as well as in para species, here we have investigated the condition under which transitions 111–110 and 212–211 of these molecules may show anomalous absorption. For the present investigation, we have calculated energy levels and radiative transition probabilities. However, we have used scaled values for collisional rate coefficients. We found that relative values of collisional rate coefficients can produce the required anom-alous absorption in 111–110 and 212–211 transitions in the molecules.   相似文献   

8.
Polarized spectra of the optical absorption of the 4f → 4f transition 7 F 65 D 4 in rare-earth orthoaluminate TbAlO3 were experimentally studied at temperature T = 78 K. It was shown that the nontrivial character of the absorption anisotropy of TbAlO3 at low temperatures could be related either to the symmetry of wave functions of the Stark sublevels of 7 F 6 and 5 D 4 multiplets combining in the optical transitions under study or to optical experiment geometry that takes into account the orientation of incident light polarization relative to the crystal axes and the axes of local coordinate systems of a rare-earth ion in orthoaluminate.  相似文献   

9.
Optical absorption spectra of the trigonal crystal of TbFe3(BO3)4 in the vicinity of the 7F65D4 transition in a Tb3+ ion were studied as a function of temperature (2–70 K) and magnetic field strength (0–60 kOe) at 2 K. The splitting of the excited states of Tb3+ due to both the magnetic ordering of iron and an external magnetic field was determined. Abrupt splitting of the absorption lines of Tb3+ at temperature TN of the magnetic ordering of the subsystem of iron was revealed, suggesting that the nature of such splitting is not entirely magnetic.  相似文献   

10.
This paper reports on the photoluminescence (PL) and time-resolved properties of Ce3+, Eu3+, and Tb3+ in novel LiSr4(BO3)3 powder phosphors. Ce3+ shows an emission band peaking at 420 nm under 350-nm UV excitation. Energy transfer from Ce3+ to Mn2+ takes place in the co-doped samples. Eu3+ shows red emission under near UV excitation. LiSr4(BO3)3:Eu3+ phosphor could be a suitable candidate for phosphor-converted solid state lighting. The luminescence lifetime is 2.13 ms for Eu3+ in LiSr4(BO3)3:0.001Eu3+. As Eu3+ concentration increasing, the decay curves deviate from exponential behavior. Tb3+ shows the strongest 5D47 F5 emission line at 540 nm. Decay curves of 5D47 F5 and 5D37 F5 emission with different Tb3+ concentrations were also measured. Cross-relaxation process is discussed based on the decay curves.  相似文献   

11.
We have studied the effect of lead dopant on the optical absorption, photoluminescence, and x-ray luminescence spectra, and the scintillation characteristics of CdI2 at room temperature. The crystals for the study were grown by the Stockbarger-Bridgman method. Activation of CdI2 from the melt by the compound PbI2 leads to the appearance in the absorption spectra in the near-edge region of an activator band at 395–405 nm, which is interpreted as an A band connected with electronic transitions from the 1S0 state to the 3P1 levels in the Pb2+ ion. For x-ray excitation, CdI2:Pb2+ crystals with optimal dopant concentration (∼1.0 mol%) are characterized by a light yield with maximum in the 570–580 nm region that is an order of magnitude higher than for CdI2 crystals in the 490–500 nm band. For α excitation, the radioluminescence kinetics for cadmium iodide is characterized by a very short (∼0.3 nsec) rise time and fast decay of luminescence, with τ1 ≈ 4 nsec and τ2 = 10–76 nsec. Depending on the conditions under which the crystals were obtained, the fast component fraction is 95%–99%. The crystal is characterized by a similar scintillation pulse in the case of excitation by x-ray pulses. The radioluminescence pulse shape for CdI2:Pb in the decay stage is predominantly exponential, with luminescence decay time constants τ1 ≈ 10 nsec and τ2 = 200–250 nsec. This system is characterized by low afterglow, at the level for the Bi4G3O12 scintillator. We have demonstrated the feasibility of using CdI2:Pb as a scintillator for detecting α particles. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 825–830, November–December, 2008.  相似文献   

12.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

13.
A Tm3+-doped NaLa(WO4)2 single crystal with a dimension of Φ20 mm×40 mm was grown by the Czochralski method. Anisotropic thermal expansion coefficients of this crystal were investigated. Polarized absorption spectra, emission spectra and decay curve were recorded at room temperature. The absorption and emission cross-section were presented. Based on the Judd–Ofelt analysis, we obtained the three intensity parameters: Ω2=10.21×10-20, Ω4=2.66×10-20, and Ω6=1.46×10-20 cm2. The radiative probabilities, radiative lifetimes, and branch ratios of Tm3+:NaLa(WO4)2 were calculated, too. Luminescence lifetime of the 3 H 4 level was measured to be 220 μs. The stimulated emission cross-section for the 3 F 43 H 6 transition were determined using the reciprocity method, potential laser gain for this transition were also investigated, the gain curves implied that the tunable range is up to 200 nm. PACS 42.70.Hj; 78.20.-e  相似文献   

14.
Claims have been made that f0(1370) does not exist. The five primary sets of data requiring its existence are refitted with suitable Breit–Wigner amplitudes. Major dispersive effects due to the opening of the 4π threshold are included for the first time; the σ→4π amplitude plays a strong role. Crystal Barrel data on p̄p→3π0 at rest require f0(1370) signals of at least 32 and 33 standard deviations (σ) in 1S0 and 3P1 annihilation respectively. Furthermore, they agree within 5 MeV for mass and width. Data on p̄p→ηηπ0 agree and require at least a 19σ contribution. This alone is sufficient to demonstrate the existence of f0(1370). BES II data for J/Ψ→φπ+π- contain a visible f0(1370) signal >8σ. In all cases, a resonant phase variation is required. Cern–Munich data for ππ elastic scattering are fitted well with the inclusion of some mixing between σ, f0(1370) and f0(1500). Values of Γ for f2(1565), ρ3(1690), ρ3(1990) and f4(2040) are determined. PACS 13.25.Gv; 14.40.Gx; 13.40.Hq  相似文献   

15.
The up-converting ZrO2:Yb3+,Er3+ nanomaterials were prepared with the combustion and sol–gel methods. FT-IR spectroscopy was used for analyzing the impurities. The crystal structures were characterized with X-ray powder diffraction and the mean crystallite sizes were estimated with the Scherrer formula. Up-conversion luminescence measurements were made at room temperature with IR-laser excitation at 977 nm. The IR spectra revealed the conventional and OH impurities for the combustion synthesis products. The structure of the ZrO2:Yb3+, Er3+ nanomaterials was cubic except for the minor monoclinic and tetragonal impurities obtained with the sol–gel method. The materials showed red (650–700 nm) and green (520–560 nm) up-conversion luminescence due to the 4F9/24I15/2 and (2H11/2, 4S3/2)→4I15/2 transitions of Er3+, respectively. The products obtained with the combustion synthesis exhibited the most intense luminescence intensity and showed considerable afterglow.  相似文献   

16.
We have studied the signs of phase transitions and spatial modulation of the structure in the absorption spectra of an (NCH3)4)2Zn0.8Ni0.2Cl4 crystal. We have observed the existence of phase transitions in the given solid solution at temperatures of 155 K, 168 K, 275 K, 280 K, and 296 K. We have established that the thermooptic memory effect observed in the absorption spectra is completely consistent with a model of defect ordering in the sample in the field of the modulated structure. According to this model, stabilization of the sample in an incommensurable phase leads to fixing of a certain symmetry in the crystal (usually a lower symmetry than the average symmetry of the incommensurable phase) and a metal-halogen complex corresponding to the defect wave. As a result, we observe an appreciable shift of the intra-ionic absorption bands and an increase in their intensity. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 5, pp. 717–723, September–October, 2008.  相似文献   

17.
The steady-state and photoinduced absorption spectra of Bi12SiO20 crystals doped with molybdenum are investigated. It is demonstrated that the impurity absorption is associated with the Mo6+ and Mo5+ ions occupying the positions close to the tetrahedral Si4+ position. The mechanism of the photochromic effect is proposed. This mechanism involves the change in the charge state of molybdenum impurity ions according to the scheme MoSi6+ + e → MoSi5+.  相似文献   

18.
Spectra of optical absorption in Bi0.5Sb1.5Te3 films grown on mica and KBr substrates have been investigated for T = 145 and 300 K. The data obtained have been analyzed together with the data of investigations on the fundamental absorption edge for Bi2Te3 available in the scientific literature. It has been revealed that the interband absorption spectra for both Bi0.5Sb1.5Te3 and Bi2Te3 represent a superposition of two components corresponding to direct and indirect allowed optical transitions. In this case, the least energy gap separating the valence band and the conduction band is direct for Bi2−xSbxTe3 (x ≤ 1.5, T = 300 K). For Bi0.5Sb1.5Te3 the temperature variation rates have been estimated for the thresholds of direct and indirect interband transitions. It has been shown that this solid solution is direct gap solution at T ≥ 145 K. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 7, pp. 50–52, July, 2008.  相似文献   

19.
Polarized spectral properties of Er3+:NaGd(WO4)2 single crystal are reported. The crystal was grown by the Czochralski method. The Judd–Ofelt theory was applied to analyze the polarized absorption spectra and then calculate the spontaneous emission probabilities, radiative lifetimes, and branching ratios. Fluorescence decay curves of the 4 I 13/2, 4 I 11/2, and 4 S 3/2 multiplets for the Er3+ ions were measured. Stimulated emission cross-sections of the 4 I 13/24 I 15/2 transition obtained by the Fuchtbauer–Ladenberg formula and the reciprocity method were compared. Multi-phonon relaxation rates of the crystal were estimated. Green up-conversion fluorescence around 531 and 552 nm was observed, and the possible up-conversion mechanisms were proposed. PACS 78.20.-e; 42.70.Hj  相似文献   

20.
The fluorescent transitions5 D 0.17 F J (J=0−4) of the europium ion in the Tb1.8Eu0.2 (MoO4)3 single crystal were recorded at 300 and 20 K. The forbidden and the hypersensitive transitions were observed in this system. The intensity ratio between5 D 07 F 1 and5 D 07 F 2 which is 1:5 is discussed in the light of covalency between the Eu3+ ion and MoO4 tetrahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号