首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The heterobitopic ligands L(AB4) and L(AB5) have been designed and synthesised with the ultimate aim of self-assembling dual-function lanthanide complexes containing either a magnetic and a luminescent probe or two luminescent probes emitting at different wavelengths. They react with lanthanide ions to form complexes of composition [Ln(2)(L(ABX))(3)](6+) of which three (X = 4; Ln = Pr, Nd, Sm) have been isolated and characterised by means of X-ray diffraction. The unit cells contain triple-stranded helicates in which the three ligand strands are wrapped tightly around the two lanthanide ions. In acetonitrile solution the ligands form not only homobimetallic, but also heterobimetallic complexes of composition [Ln(1)Ln(2)(L(ABX))(3)](6+) when reacted with a pair of different lanthanide ions. The yield of heterobimetallic complexes is analyzed in terms of both the difference in ionic radii of the lanthanide ions and of the inherent tendency of the ligands to form high percentages of head-head-head (HHH) helicates in which all three ligand strands are oriented in the same direction with respect to the Ln-Ln vector. The latter is very sensitive to slight modifications of the tridentate coordinating units.  相似文献   

2.
Reaction of a bent py-hyz-pym-hyz-pym 1 and of a linear py-hyz-py-hyz-pym 3 (py=pyridine; pym=pyrimidine; hyz=hydrazone) ligand strands with silver(I) tetrafluoroborate in CH(3)NO(2) generates double-helical dinuclear 2 and trinuclear 4 complexes. These complexes form polymeric, highly ordered solid-state structures, with wirelike, linear continuous or discontinuous polycationic Ag(n) (+) arrays with Ag--Ag distances of 2.78 to 4.42 A. Ligand 5, an isomer of 1, is found to yield a [2x2] grid-type complex 6. Titration experiments reveal the formation of linear rack-type dinuclear species from 1 and 5. Acid-base modulated, reversible interconversion between strand 1 and double helicate 2 may be achieved by using tren as a competing complexing agent (tren=N(CH(2)CH(2)NH(2))(3)). Progressive addition of silver(I) ions to a 1:1 mixture of 1 and 5 leads to the preferential formation of the double helicate 2 over the grid complex 6, illustrating a process of self-organisation with selection of the correct ligand.  相似文献   

3.
Double helicates are known to exhibit self-recognition characteristics determined by the coordination geometry of the metal involved as well as by the topicity of the ligands. Combining tridentate (terpyridine, T) or bidentate (bipyridine, B) subunits in a tritopic strand affords a set of ligands able to assemble by pairs to form double helicates, homo- or heterostranded, homo- or heterotopic, depending on the coordination properties of the metals involved. The four ligand strands, BBB, TTT, BBT, and TBT form constitutionally dynamic sets of double helicates with the metal ions Cu(I), Cu(II), and Zn(II); these helicates correspond to the correct coding of the BB, BT, and TT pairs for tetra-, penta-, and hexacoordinate Cu(I), Cu(II), and Zn(II) cations, respectively.  相似文献   

4.
The bis-bidentate bridging ligand L reacts with Ag(I) ions to form a conventional dinuclear [Ag(2)L(2)](2+) double helicate; individual double helicate units assemble via Ag···Ag interactions into infinite chains, three of which wrap around a central spine of anions to give a triple helical braid, which is therefore an infinite triple helix composed of molecular double helicate subunits.  相似文献   

5.
This article reports the preparation of a range of phenyl, pyridyl and pyrazinyl substituted pyridazines via the inverse electron demand [2 + 4] Diels-Alder reaction between 3,6-di(2-pyridyl)-1,2,4,5-tetrazines (bptz) and 3,6-di(2-pyrazinyl)-1,2,4,5-tetrazines (bpztz) and suitable dienophiles including acenaphthalene. The resulting polyaromatic compounds vary systematically in the number of aromatic substituents and the number and position of N-heteroatoms. For four of these compounds, the effect of the molecular changes on the solid-state structures were investigated using single crystal X-ray crystallography. The pyridazines were used as bidentate ligands in {M(II)(bipy)(2)} and tris(homoleptic) complexes (M = Fe, Ru). The optical and electrochemical properties of these complexes reflect the electron accepting character of the new ligands. The facial and meridional isomers of the tris complexes could be separated by column chromatography (on silica), thus allowing a spectral comparison of their absorption and emission properties. The solid-state structures of several of the metal complexes are discussed, including that of the facial isomer of the tris Ru(II) complex of 3,6-bis(2-pyridyl)-4,5-bis(4-pyridyl)pyridazine--a potential preformed geometric motif for the predirected construction of supramolecular assemblies.  相似文献   

6.
Metathesis reactions of the alkali metal formamidinates M(RNC(H)NR), M = Li or K; R = C(6)H(3)-2,6-Pr(i)(2) (L(1)), C(6)H(3)-2,6-Et(2) (L(2)); C(6)H(2)-2,4,6-Me(3) (L(3)), C(6)H(3)-2,6-Me(2) (L(4)) or C(6)H(4)-2-Ph (L(5)), with BiX(3) (X = Cl or Br) gave a range of bismuth(iii) formamidinate complexes [Bi(L)Br(micro-Br)(thf)](2) (L = L(1), L(4)), [{Bi(L(1))Cl(2)(thf)}(2)Bi(L(1))Cl(2)], [Bi(L)(2)X] (L = L(2), L(5), X = Br; L = L(1), X = Cl), and [Bi(L)(3)] (L = L(2), L(3)). An analogous organometallic complex Bi(L(1))(2)Bu(n) was also isolated as a side product in one instance. Structural characterisation of the di-halide complexes show symmetrical dimers for X = Br, with two bromide bridges, and a coordinated thf molecule on each Bi atom, whereas for X = Cl a thf deficient species was crystallised, and has a weakly associated trinuclear array with two coordinated thf molecules per three Bi atoms. Complexes of the form Bi(L)(2)X (X = Br, Cl, Bu(n)) and Bi(L)(3) all have monomeric structures but the Bi(L)(3) species show marked asymmetry of the formamidinate binding, suggesting that they have reached coordination saturation.  相似文献   

7.
Dang D  Zheng G  Bai Y  Yang F  Gao H  Ma P  Niu J 《Inorganic chemistry》2011,50(17):7907-7909
Two polyoxometalate-based silver(I) compounds including a three-dimensional porous crystalline array and a double-helicate bisupporting cluster were achieved using metal-organic helicates and Keggin [PMo(12)O(40)](3-) as secondary building blocks.  相似文献   

8.
A novel set of stereochemically nonrigid monomeric two-coordinate copper(I) complexes, [Cu(eta(1)-H(2)CPz'(2))(2)]ClO(4) 1, [Cu(HPz')(2)]ClO(4) 2, and [Cu(HPz')(eta(1)-H(2)CPz'(2))]ClO(4) 3, where Pz' = 3,5-di-tert-butylpyrazolyl, has been synthesized and characterized by X-ray diffraction and variable-temperature (1)H NMR spectroscopy. Based on the (1)H NMR line shape analysis of complexes 1 and 2, the intramolecular fluxional process was proposed for these two-coordinate copper(I) complexes. Also, the mixed ligand complex 3 shows that these two different dynamic binding modes of the coordinated HPz' and H(2)CPz'(2) ligands can proceed simultaneously on a single copper(I) ion.  相似文献   

9.
Du M  Bu XH  Huang Z  Chen ST  Guo YM  Diaz C  Ribas J 《Inorganic chemistry》2003,42(2):552-559
The reaction of various CuII salts with 2,5-bis(3-pyridyl)-1,3,4-oxadiazole (L) in CH3CN-H2O medium affords different complexes, the solid structures of which are controlled only by the choice of the counteranions. Reaction of Cu-(ClO4)2.6H2O or Cu(NO3)2.3H2O and L yields the novel bimetallic macrocyclic complex [Cu2L2(H2O)6](ClO4)4(H2O)4 (1) [monoclinic, space group P21/m, a = 8.745(5) A, b = 16.179(10) A, c = 14.930(8) A, beta = 93.253(10) degrees, Z = 2] or [CuL(NO3)2]2(CH3CN)2 (2) [triclinic, space group P1, a = 7.863(3) A, b = 8.679(3) A, c = 13.375(5) A, alpha = 74.121(5) degrees, beta = 78.407(6) degrees, gamma = 86.307(6) degrees, Z = 1]. However, with the replacement of CuII perchlorate or nitrate salts with CuSO4.5H2O or Cu(OAc)2.H2O in the above reaction, two different one-dimensional (1-D) coordination polymers [[Cu2L2(H2O)6(SO4)2](H2O)6]n (3) [triclinic, space group P1, a = 7.078(3) A, b = 11.565(4) A, c = 12.561(5) A, alpha = 109.511(6) degrees, beta = 105.265(6) degrees, gamma = 94.042(6) degrees, Z = 1] or [[Cu2L(mu-OAc)4]]n (4) [monoclinic, space group C2/c, a = 20.007(7) A, b = 7.506(2) A, c = 16.062(5) A, beta = 108.912(5) degrees, Z = 4] were obtained. These results unequivocally indicate that the nature of the counteranions, which play different roles in each complex, is the key factor governing the structural topologies of them. The magnetic properties of these CuII complexes have been investigated by variable-temperature magnetic susceptibility and magnetization measurements, and the magneto-structural correlation has been analyzed in detail.  相似文献   

10.
A homoleptic phosphine adduct of thallium(I) supported by a tris(phosphino)borate ligand has been isolated and structurally characterized.  相似文献   

11.
This article reports the synthesis and optical properties of three dinuclear, cationic copper complexes [Cu(2)(μ-dppm)(2)(μ-L)](NO(3))(2) (dppm diphenyldiphosphinomethane, L: L(A) 3,6-bis(2-pyridyl)-4,5-diphenyl-pyridazine, L(B) 3,6-bis(2-pyridyl)-4,5-di(4-pyridyl)-pyridazine and L(C) 3,6-bis(2-pyridyl)-8,9-diazafluoranthene). These were formed on the reaction of [Cu(μ-dppm)(NO(3))](2) with a series of N-donor (bppn) ligands L. The single crystal X-ray structures of [Cu(2)(μ-dppm)(2)(μ-L)](NO(3))(2)·CH(2)Cl(2) were determined and revealed that in both, the two copper atoms are held by three bridging ligands, two dppm ligands and one bppn ligand acting as a tetradentate bridge. The absorption spectra of the complexes present a MLCT [Cu → π*(N(∧)N)] band in the λ 370-425 nm region. These new complexes exhibit red-orange MLCT-based emission in the solid-state with lifetimes in the microsecond range. In oxygen-free dichloromethane solution, the complex [Cu(2)(μ-dppm)(2)(μ-L(C))](2+) has a long lifetime of 22.8 μs. The long emission lifetimes are attributed to a rigid conformation that precludes the possible distortion of the copper in the excited state.  相似文献   

12.
A series of bisimine-bridged dicatechol ligands 2-H(4)-5-H(4) were synthesized and were used to prepare triple-stranded dinuclear helicate-type complexes with a length of up to more than 2 nm. X-ray structural analyses of Na(4)[(2)(3)V(2)], Na(4)[(3)(3)Ti(2)], Na(4)[(4)(3)Ti(2)], and Na(4)[(5)(3)Ti(2)], as well as temperature-dependent NMR investigations of Na(4)[(4)(3)Ti(2)] and Na(4)[(5)(3)Ti(2)] show that, in the case of the rigid linear ligands 2 and 3, and of the ligand 5, which possesses C(2h) symmetry in its idealized structure, homochiral helicates are diastereoselectively formed. Ligand 4, on the other hand, with idealized C(2v) symmetry, leads with surprisingly high selectivity to the formation of the heterochiral meso-helicate. This is attributed to the ability of ligand 4 to adopt a less-restricted conformation in the meso compound than in the helical complex. NMR investigations indicate that both complex units of Na(4)[(4)(3)Ti(2)] invert (LambdaDelta-->DeltaLambda) simultaneously, while in the case of Na(4)[(5)(3)Ti(2)] a stepwise racemization proceeds.  相似文献   

13.
Dicatechol ligands 3b-g-H4 are simply prepared by imine formation of 2,3-dihydroxybenzaldehyde 2 with a series of different diamines 1b-g . An X-ray structural analysis was obtained for the butyl-bridged compound 3e-H4, showing an intramolecular proton transfer and the formation of a chinoidic "keto-amine" structure. The dicatechol derivatives 3b-g-H4 form dinuclear triple-stranded helicates M4[(3)3Ti2] with titanium(IV) ions in the presence of alkali-metal carbonate. For the phenyl- and the trans-1,4-cyclohexyl-bridged complexes, K4[(3b)3Ti2] and Na4[(3f)3Ti2], X-ray structures were obtained.  相似文献   

14.
15.
The kinetics of proton transfer between poly(A—AH) (partially protonated double-stranded polyadenylic acid) and CPR (chlorophenol red), and between poly(C—H—C) (partially protonated double-stranded polycytidylic acid) and the indicators CPR, BCP (bromocresol purple), and BCG (bromocresol green) have been investigated at 25°C and ionic strength 0.1 M (NaClO4) by the temperature-jump method. The acidic proton of poly(C—H—C) is engaged in a hydrogen bond (N3H+––––N3) which is believed to contribute to stabilizing the double-strand conformation, whereas the acidic proton of poly(A—A—H) does not form hydrogen bonds. The analysis of the dependence of the relaxation times on the concentrations of the reactants has enabled the evaluation of the rate constants for the direct proton transfer and for the protolysis paths. The rate constants for proton recombination with the deprotonated forms of the polynucleotides and the indicators are of the order of magnitude expected for diffusion controlled processes involving oppositely charged ions (k2=(0.2−1.6)×1010 M−1s−1). The direct proton transfer from poly(C—H—C) to BCG is thermodynamically disfavored and its rate constant, k1, is lower than k2 by about three orders of magnitude. The (thermodynamically favored) proton transfers from poly(A—A—H) to CPR and from poly(C—H—C) to CPR and BCP are characterized by similar values of k1. This result indicates that the hydrogen bonds in poly(C—H—C) are very weak and suggests that the stabilization of the double-stranded conformation of this polynucleotide could be ascribed to the large number of hydrogen bonds rather than to their specific strength. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet: 30: 161–169, 1998.  相似文献   

16.
Diphenylvinylarsine oxide reacts with 1,2-bis(phenylphosphino)ethane in the presence of potassium tert-butoxide to give the anti-Markovnikov product (R,R)-(+/-)/(R,S)-1,1,4,7,10,10-hexaphenyl-1,10-diarsa-4,7-diphosphadecane dioxide-1AsO,10AsO, which, upon reduction with HSiCl(3)/NEt(3) in boiling acetonitrile, affords in 84% overall yield the di(tertiary arsine)-di(tertiary phosphine) (R,R)-(+/-)/(R,S)-diphars. After separation of the diastereomers by fractional crystallization, the (R,R)-(+/-) form of the ligand was resolved by metal complexation with (+)-di(mu-chloro)bis[(R)-1-[1-(dimethylamino)ethyl]-2-phenyl-C(2),N]dipalladium(II): (R,R)-diphars, mp 87-88 degrees C, has [alpha](D)(21) = -18.6 (c 1.0, CH(2)Cl(2)); (S,S)-diphars has [alpha](D)(21) = +18.4 (c 1.0, CH(2)Cl(2)). The crystal and molecular structures of the complexes (M)-[M(2)[(R,R)-diphars](2)](PF(6))(2) (M = Cu, Ag, Au) have been determined: [M-(S(Cu),S(Cu))]-(-)-[Cu(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.084(3) A, b = 18.376(3) A, c = 29.149(6) A, Z = 4; [M-(S(Ag),S(Ag))]-(+)-[Ag(2)[(R,R)-diphars](2)](PF(6))(2), triclinic, P1, a = 12.487(2) A, b = 12.695(4) A, c = 27.243(4) A, alpha = 92.06 degrees, beta = 95.19 degrees, gamma = 98.23 degrees, Z = 2; [M-(S(Au),S(Au))]-(-)-[Au(2)[(R,R)-diphars](2)](PF(6))(2), orthorhombic, P2(1)2(1)2(1) (No. 19), a = 16.199(4) A, b = 18.373(4) A, c = 29.347(2) A, Z = 4. In the copper(I) and gold(I) helicates, each ligand strand completes 1.5 turns of an M helix in a parallel arrangement about the two chiral MAs(2)P(2) stereocenters of S configuration. The unit cell of the silver(I) complex contains one molecule each of the parallel helicate of M configuration and the conformationally related double alpha-helix of M configuration in which each ligand strand completes 0.5 turns of an M helix about two metal stereocenters of S configuration. Energy minimization calculations of the three structures with use of the program SPARTAN 5.0 gave results that were in close agreement with the core structures observed.  相似文献   

17.
The octanuclear CuI cubic clusters [Cu8(S2PPh2)6]2+ (1) and [Cu88-Cl)(S2PPh2)6]+ (2) have been prepared and crystallographically characterized, and their cluster bonding modes investigated with density functional theory (DFT) calculations. Both are rare examples of metal dithiophosphinate clusters and 1 is the first example of a non anion-centered or ‘empty’ dithiophosph(in)ate CuI8 cube. DFT calculations indicate that the stability of the empty cluster 1 can be attributed to its strong metal–ligand interactions, with no significant Cu?Cu bonding interactions present. Comparison of the solid-state structures of 1, 2 and the analogous sulfide centered cluster [Cu88-S)(S2PPh2)6] (3) reveals a significant contraction of the octanuclear CuI8 cube upon anion encapsulation. This contraction is shown, using DFT calculations, to be predominately assignable to the ionic interaction between the CuI cations and the encapsulated anion center.  相似文献   

18.
Unsymmetrical substituted bidentate benzimidazol-2-ylpyridine ligands L2 and L3 react with [Ru(dmso)(4)Cl(2)] in ethanol to give statistical 1:3 mixtures of fac-[Ru(Li)(3)](2+) and mer-[Ru(Li)(3)](2+) (i=2, 3; DeltaGtheta(isomerisation)=-2.7 kJ mol(-1)). In more polar solvents (acetonitrile, methanol), the free energy of the facial<=>meridional isomerisation process favours mer-[Ru(Li)(3)](2+), which is the only isomer observed in solution at the equilibrium (DeltaGtheta(isomerisation)< or = -11.4 kJ mol(-1)). Since the latter process takes several days for [Ru(L2)(3)](2+), fac-[Ru(L2)(3)](2+) and mer-[Ru(L2)(3)](2+) have been separated by chromatography, but the 28-fold increase in velocity observed for [Ru(L3)(3)](2+) provides only mer-[Ru(L3)3](ClO(4))2 after chromatography (RuC(60)H(51)N(9)O(8)Cl(2), monoclinic, P2(1)/n, Z=4). The facial isomer can be stabilised when an appended tridentate binding unit, connected at the 5-position of the benzimidazol-2-ylpyridine unit in ligand L1, interacts with nine-coordinate lanthanides(III). The free energy of the facial<=>meridional isomerisation is reversed (DeltaGtheta(isomerisation)> or =11.4 kJ mol(-1)), and the Ru--N bonds are labile enough to allow the quantitative thermodynamic self-assembly of HHH-[RuLu(L1)(3)]5+ within hours ([RuLu(L1)3](CF(3)SO(3))(4.5)Cl(0.5)(CH(3)OH)(2.5): RuLuC(106)H(109)Cl(0.5)N(21)O(19)S(4.5)F(13.5), triclinic, P(-)1, Z=2). Electrochemical and photophysical studies show that the benzimidazol-2-ylpyridine units in L1-L3 display similar pi-acceptor properties to, but stronger pi-donor properties than, those found in 2,2'-bipyridine. This shifts the intraligand pi-->pi* and the MLCT transitions toward lower energies in the pseudo-octahedral [Ru(Li)(3)](2+) (i=2, 3) chromophores. The concomitant short lifetime of the (3)MLCT excited state points to efficient, thermally activated quenching via low-energy Ru-centred d-d states, a limitation which is partially overcome by mechanical coupling in HHH-[RuLu(L1)(3)]5+.  相似文献   

19.
Copper(I) alkynyl complexes have attracted tremendous attention in structural studies, as luminescent materials, and in catalysis, and homoleptic complexes have been reported to form polymers or large clusters. Herein, six unprecedented structures of CuI alkynyl complexes and a procedure to measure the cone angles of alkynyl ligands based on the crystal structures of these complexes are reported. An increase of the alkynyl cone angle in the complexes leads to a modulation of the structures from polymeric [((PhC≡CC≡C)Cu)2(NH3)], to a large cluster [(TripC≡CC≡C)Cu]20(MeCN)4, to a relatively small cluster [(TripC≡C)Cu]8 (Trip=2,4,6‐iPr3‐C6H2). The complexes exhibit yellow‐to‐red phosphorescence at ambient temperature in the solid state and the luminescence behavior of the Cu20 cluster is sensitive to acetonitrile.  相似文献   

20.
The coordination chemistry of a series of di- and tri-nucleating ligands with Ag(I), Hg(I) and Hg(II) has been investigated. Most of the ligands contain two or three N,N'-bidentate chelating pyrazolyl-pyridine units pendant from a central aromatic spacer; one contains three binding sites (2 + 3 + 2-dentate) in a linear sequence. A series of thirteen complexes has been structurally characterised displaying a wide range of structural types. Bis-bidentate bridging ligands react with Ag(I) to give complexes in which Ag(I) is four-coordinate from two bidentate donors, but the complexes can take the form of one-dimensional coordination polymers, or dinuclear complexes (mesocate or helicate). A tris-bidentate triangular ligand forms a complicated two-dimensional coordination network with Ag(I) in which Ag...Ag contacts, as well as metal-ligand coordination bonds, play a significant role. Three dinuclear Hg(I) complexes were isolated which contain an {Hg2}2+ metal-metal bonded core bound to a single bis-bidentate ligand which can span both metal ions. Also characterised were a series of Hg(II) complexes comprising a simple mononuclear four-coordinate Hg(II) complex, a tetrahedral Hg(II)4 cage which incorporates a counter-ion in its central cavity, a trinuclear double helicate, and a trinuclear catenated structure in which two long ligands have spontaneously formed interlocked metallomacrocyclic rings thanks to cyclometallation of two of the Hg(II) centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号