首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fredericamycin (FDM) A, a pentadecaketide featuring two sets of peri-hydroxy tricyclic aromatic moieties connected through a unique chiral spiro carbon center, exhibits potent cytotoxicity and has been studied as a new type of anticancer drug lead because of its novel molecular architecture. The fdm gene cluster was localized to 33-kb DNA segment of Streptomyces griseus ATCC 49344, and its involvement in FDM A biosynthesis was proven by gene inactivation, complementation, and heterologous expression experiments. The fdm cluster consists of 28 open reading frames (ORFs), encoding a type II polyketide synthase (PKS) and tailoring enzymes as well as several regulatory and resistance proteins. The FDM PKS features a KSalpha subunit with heretofore unseen tandem cysteines at its active site, a KSbeta subunit that is distinct phylogenetically from KSbeta of hexa-, octa-, or decaketide PKSs, and a dedicated phosphopantetheinyl transferase. Further study of the FDM PKS could provide new insight into how a type II PKS controls chain length in aromatic polyketide biosynthesis. The availability of the fdm genes, in vivo characterization of the fdm cluster in S. griseus, and heterologous expression of the fdm cluster in Streptomyces albus set the stage to investigate FDM A biosynthesis and engineer the FDM biosynthetic machinery for the production of novel FDM A analogues.  相似文献   

2.
Erythromycin A is a potent antibiotic long-recognized as a therapeutic option for bacterial infections. The soil-dwelling bacterium Saccharopolyspora erythraea natively produces erythromycin A from a 55 kb gene cluster composed of three large polyketide synthase genes (each ~10 kb) and 17 additional genes responsible for deoxysugar biosynthesis, macrolide tailoring, and resistance. In this study, the erythromycin A gene cluster was systematically transferred from S. erythraea to E. coli for reconstituted biosynthesis, with titers reaching 10 mg/l. Polyketide biosynthesis was then modified to allow the production of two erythromycin analogs. Success establishes E. coli as a viable option for the heterologous production of erythromycin A and more broadly as a platform for the directed production of erythromycin analogs.  相似文献   

3.
The biosynthetic gene cluster for the enediyne antitumor antibiotic maduropeptin (MDP) from Actinomadura madurae ATCC 39144 was cloned and sequenced. Cloning of the mdp gene cluster was confirmed by heterologous complementation of enediyne polyketide synthase (PKS) mutants from the C-1027 producer Streptomyces globisporus and the neocarzinostatin producer Streptomyces carzinostaticus using the MDP enediyne PKS and associated genes. Furthermore, MDP was produced, and its apoprotein was isolated and N-terminal sequenced; the encoding gene, mdpA, was found to reside within the cluster. The biosynthesis of MDP is highlighted by two iterative type I PKSs--the enediyne PKS and a 6-methylsalicylic acid PKS; generation of (S)-3-(2-chloro-3-hydroxy-4-methoxyphenyl)-3-hydroxypropionic acid derived from L-alpha-tyrosine; a unique type of enediyne apoprotein; and a convergent biosynthetic approach to the final MDP chromophore. The results demonstrate a platform for engineering new enediynes by combinatorial biosynthesis and establish a unified paradigm for the biosynthesis of enediyne polyketides.  相似文献   

4.
BACKGROUND: The polyene macrolide antibiotic nystatin produced by Streptomyces noursei ATCC 11455 is an important antifungal agent. The nystatin molecule contains a polyketide moiety represented by a 38-membered macrolactone ring to which the deoxysugar mycosamine is attached. Molecular cloning and characterization of the genes governing the nystatin biosynthesis is of considerable interest because this information can be used for the generation of new antifungal antibiotics. RESULTS: A DNA region of 123,580 base pairs from the S. noursei ATCC 11455 genome was isolated, sequenced and shown by gene disruption to be involved in nystatin biosynthesis. Analysis of the DNA sequence resulted in identification of six genes encoding a modular polyketide synthase (PKS), genes for thioesterase, deoxysugar biosynthesis, modification, transport and regulatory proteins. One of the PKS-encoding genes, nysC, was found to encode the largest (11,096 amino acids long) modular PKS described to date. Analysis of the deduced gene products allowed us to propose a model for the nystatin biosynthetic pathway in S. noursei. CONCLUSIONS: A complete set of genes responsible for the biosynthesis of the antifungal polyene antibiotic nystatin in S. noursei ATCC 11455 has been cloned and analyzed. This represents the first example of the complete DNA sequence analysis of a polyene antibiotic biosynthetic gene cluster. Manipulation of the genes identified within the cluster may potentially lead to the generation of novel polyketides and yield improvements in the production strains.  相似文献   

5.
Azaserine is a bacterial metabolite containing a biologically unusual and synthetically enabling α-diazoester functional group. Herein, we report the discovery of the azaserine (aza) biosynthetic gene cluster from Glycomyces harbinensis. Discovery of related gene clusters reveals previously unappreciated azaserine producers, and heterologous expression of the aza gene cluster confirms its role in azaserine assembly. Notably, this gene cluster encodes homologues of hydrazonoacetic acid (HYAA)-producing enzymes, implicating HYAA in α-diazoester biosynthesis. Isotope feeding and biochemical experiments support this hypothesis. These discoveries indicate that a 2-electron oxidation of a hydrazonoacetyl intermediate is required for α-diazoester formation, constituting a distinct logic for diazo biosynthesis. Uncovering this biological route for α-diazoester synthesis now enables the production of a highly versatile carbene precursor in cells, facilitating approaches for engineering complete carbene-mediated biosynthetic transformations in vivo.  相似文献   

6.
Chen S  Huang X  Zhou X  Bai L  He J  Jeong KJ  Lee SY  Deng Z 《Chemistry & biology》2003,10(11):1065-1076
The complete gene cluster for biosynthesis of a polyene complex, FR-008, spans 137.2 kb of the genome of Streptomyces sp. FR-008 consisting of six genes for a modular PKS and 15 additional genes. The extensive similarity to the partially characterized candicidin gene cluster in Streptomyces griseus IMRU3570, especially for genes involved in mycosamine biosynthesis, prompted us to compare the compounds produced by Streptomyces sp. FR-008 and Streptomyces griseus IMRU3570, and we found that FR-008 and candicidin complex are identical. A model for biosynthesis of a set of four structurally related FR-008/candicidin compounds was proposed. Deletion of the putative regulatory genes abolished antibiotic production, while disruption of putative glycosyltransferase and GDP-ketosugar aminotransferase functionalities led to the productions of a set of nonmycosaminated aglycones and a novel polyene complex with attachment of altered sugar moiety, respectively.  相似文献   

7.
BACKGROUND: The polyene macrolide amphotericin B is produced by Streptomyces nodosus ATCC14899. Amphotericin B is a potent antifungal antibiotic and has activity against some viruses, protozoans and prions. Treatment of systemic fungal infections with amphotericin B is complicated by its low water-solubility and side effects which include severe nephrotoxicity. Analogues with improved properties could be generated by manipulating amphotericin biosynthetic genes in S. nodosus. RESULTS: A large polyketide synthase gene cluster was cloned from total cellular DNA of S. nodosus. Nucleotide sequence analysis of 113193 bp of this region revealed six large polyketide synthase genes as well as genes for two cytochrome P450 enzymes, two ABC transporter proteins, and genes involved in biosynthesis and attachment of mycosamine. Phage KC515-mediated gene disruption was used to show that this region is involved in amphotericin production. CONCLUSIONS: The availability of these genes and the development of a method for gene disruption and replacement in S. nodosus should allow production of novel amphotericins. A panel of analogues could lead to identification of derivatives with increased solubility, improved biological activity and reduced toxicity.  相似文献   

8.
He J  Hertweck C 《Chemistry & biology》2003,10(12):1225-1232
Analysis of the type I modular polyketide synthase (PKS) involved in the biosynthesis of the rare nitroaryl polyketide metabolite aureothin (aur) from Streptomyces thioluteus HKI-227 has revealed only four modules to catalyze the five polyketide chain extensions required. By heterologous expression of the aur PKS cluster, direct evidence was obtained that these modules were sufficient to support aureothin biosynthesis. It appears that one module catalyzes two successive cycles of chain extension, one of the first examples of a PKS in which such iteration or "stuttering" is required to produce the normal polyketide product. In addition, lack of a specified loading domain implicates a novel PKS priming mechanism involving the unique p-nitrobenzoate starter unit. The 27 kb aur gene cluster also encodes a novel N-oxidase, which may represent the first member of a new family of such enzymes.  相似文献   

9.
BACKGROUND: The mitomycins are natural products that contain a variety of functional groups, including aminobenzoquinone- and aziridine-ring systems. Mitomycin C (MC) was the first recognized bioreductive alkylating agent, and has been widely used clinically for antitumor therapy. Precursor-feeding studies showed that MC is derived from 3-amino-5-hydroxybenzoic acid (AHBA), D-glucosamine, L-methionine and carbamoyl phosphate. A genetically linked AHBA biosynthetic gene and MC resistance genes were identified previously in the MC producer Streptomyces lavendulae NRRL 2564. We set out to identify other genes involved in MC biosynthesis. RESULTS: A cluster of 47 genes spanning 55 kilobases of S. lavendulae DNA governs MC biosynthesis. Fourteen of 22 disruption mutants did not express or overexpressed MC. Seven gene products probably assemble the AHBA intermediate through a variant of the shikimate pathway. The gene encoding the first presumed enzyme in AHBA biosynthesis is not, however, linked within the MC cluster. Candidate genes for mitosane nucleus formation and functionalization were identified. A putative MC translocase was identified that comprises a novel drug-binding and export system, which confers cellular self-protection on S. lavendulae. Two regulatory genes were also identified. CONCLUSIONS: The overall architecture of the MC biosynthetic gene cluster in S. lavendulae has been determined. Targeted manipulation of a putative MC pathway regulator led to a substantial increase in drug production. The cloned genes should help elucidate the molecular basis for creation of the mitosane ring system, as well efforts to engineer the biosynthesis of novel natural products.  相似文献   

10.
11.
Xiamycin A (XMA) and oxiamycin (OXM) are bacterial indolosesquiterpenes featuring rare pentacyclic ring systems and are isolated from a marine-derived Streptomyces sp. SCSIO 02999. The putative biosynthetic gene cluster for XMA/OXM was identified by a partial genome sequencing approach. Eighteen genes were proposed to be involved in XMA/OXM biosynthesis, including five genes for terpene synthesis via a non-mevalonate pathway, eight genes encoding oxidoreductases, and five genes for regulation and resistance. Targeted disruptions of 13 genes within the xia gene cluster were carried out to probe their encoded functions in XMA/OXM biosynthesis. The disruption of xiaK, encoding an aromatic ring hydroxylase, led to a mutant producing indosespene and a minor amount of XMA. Feeding of indosespene to XMA/OXM nonproducing mutants revealed indosespene as a common precursor for XMA/OXM biosynthesis. Most notably, the flavin dependent oxygenase XiaI was biochemically characterized in vitro to convert indosespene to XMA, revealing an unusual oxidative cyclization strategy tailoring indolosesquiterpene biosynthesis.  相似文献   

12.
Pamamycins are macrodiolides of polyketide origin with antibacterial activities. Their biosynthesis has been proposed to utilize succinate as a building block. However, the mechanism of succinate incorporation into a polyketide was unclear. Here, we report identification of a pamamycin biosynthesis gene cluster by aligning genomes of two pamamycin‐producing strains. This unique cluster contains polyketide synthase (PKS) genes encoding seven discrete ketosynthase (KS) enzymes and one acyl‐carrier protein (ACP)‐encoding gene. A cosmid containing the entire set of genes required for pamamycin biosynthesis was successfully expressed in a heterologous host. Genetic and biochemical studies allowed complete delineation of pamamycin biosynthesis. The pathway proceeds through 3‐oxoadipyl‐CoA, a key intermediate in the primary metabolism of the degradation of aromatic compounds. 3‐Oxoadipyl‐CoA could be used as an extender unit in polyketide assembly to facilitate the incorporation of succinate.  相似文献   

13.
14.
Nigericin was among the first polyether ionophores to be discovered, but its biosynthesis remains obscure. The biosynthetic gene cluster for nigericin has been serendipitously cloned from Streptomyces sp. DSM4137, and deletion of this gene cluster abolished the production of both nigericin and the closely related metabolite abierixin. Detailed comparison of the nigericin biosynthetic genes with their counterparts in the biosynthetic clusters for other polyketides has prompted a significant revision of the proposed common pathway for polyether biosynthesis. In particular, we present evidence that in nigericin, nanchangmycin, and monensin, an unusual ketosynthase-like protein, KSX, transfers the initially formed linear polyketide chain to a discrete acyl carrier protein, ACPX, for oxidative cyclization. Consistent with this, deletion of either monACPX or monKSX from the monensin gene cluster effectively abolished monensin A biosynthesis.  相似文献   

15.
Soil is predicted to contain thousands of unique bacterial species per gram. Soil DNA libraries represent large reservoirs of biosynthetic diversity from which diverse secondary metabolite gene clusters can be recovered and studied. The screening of an archived soil DNA library using primers designed to target oxytryptophan dimerization genes allowed us to identify and functionally characterize the first indolotryptoline biosynthetic gene cluster. The recovery and heterologous expression of an environmental DNA-derived gene cluster encoding the biosynthesis of the antitumor substance BE-54017 is reported here. Transposon mutagenesis identified two monooxygenases, AbeX1 and AbeX2, as being responsible for the transformation of an indolocarbazole precursor into the indolotryptoline core of BE-54017.  相似文献   

16.
The antimalarial agent cladosporin is a nanomolar inhibitor of the Plasmodium falciparum lysyl‐tRNA synthetase, and exhibits activity against both blood‐ and liver‐stage infection. Cladosporin can be isolated from the fungus Cladosporium cladosporioides, where it is biosynthesized by a highly reducing (HR) and a non‐reducing (NR) iterative type I polyketide synthase (PKS) pair. Genome sequencing of the host organism and subsequent heterologous expression of these enzymes in Saccharomyces cerevisiae produced cladosporin, confirming the identity of the putative gene cluster. Incorporation of a pentaketide intermediate analogue indicated a 5+3 assembly by the HR PKS Cla2 and the NR PKS Cla3 during cladosporin biosynthesis. Advanced‐intermediate analogues were synthesized and incorporated by Cla3 to furnish new cladosporin analogues. A putative lysyl‐tRNA synthetase resistance gene was identified in the cladosporin gene cluster. Analysis of the active site emphasizes key structural features thought to be important in resistance to cladosporin.  相似文献   

17.
Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l -DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.  相似文献   

18.
The jaspamide/chondramide family of depsipeptides are mixed PKS/NRPS natural products isolated from marine sponges and a terrestrial myxobacterium that potently affect the function of the actin cytoskeleton. As a first step to improve production in heterologous host cells and permit genetic approaches to novel analogs, we have cloned and characterized the chondramide biosynthetic genes from the myxobacterium Chondromyces crocatus Cm c5. In addition to the expected PKS and NRPS genes, the cluster encodes a rare tyrosine aminomutase for beta-tyrosine formation and a previously unknown tryptophan-2-halogenase. Conditions for gene transfer into C. crocatus Cm c5 were developed, and inactivation of several genes corroborated their proposed function and served to define the boundaries of the cluster. Biochemical characterization of the final NRPS adenylation domain confirmed the direct activation of beta-tyrosine, and fluorinated chondramides were produced through precursor-directed biosynthesis.  相似文献   

19.
The apoptolidins are 20/21-membered macrolides produced by Nocardiopsis sp. FU40. Several members of this family are potent and remarkably selective inducers of apoptosis in cancer cell lines, likely via a distinct mitochondria associated target. To investigate the biosynthesis of this natural product, the complete genome of the apoptolidin producer Nocardiopsis sp. FU40 was sequenced and a 116 kb region was identified containing a putative apoptolidin biosynthetic gene cluster. The apoptolidin gene cluster comprises a type I polyketide synthase, with 13 homologating modules, apparently initiated in an unprecedented fashion via transfer from a methoxymalonyl-acyl carrier protein loading module. Spanning approximately 39 open reading frames, the gene cluster was cloned into a series of overlapping cosmids and functionally validated by targeted gene disruption experiments in the producing organism. Disruption of putative PKS and P450 genes delineated the roles of these genes in apoptolidin biosynthesis and chemical complementation studies demonstrated intact biosynthesis peripheral to the disrupted genes. This work provides insight into details of the biosynthesis of this biologically significant natural product and provides a basis for future mutasynthetic methods for the generation of non-natural apoptolidins.  相似文献   

20.
The red gene cluster of Streptomyces coelicolor directs production of undecylprodiginine. Here we report that this gene cluster also directs production of streptorubin B and show that 2-undecylpyrrole (UP) is an intermediate in the biosynthesis of undecylprodiginine and streptorubin B. The redPQRKL genes are involved in UP biosynthesis. RedL and RedK are proposed to generate UP from dodecanoic acid or a derivative. A redK(-) mutant produces a hydroxylated undecylprodiginine derivative, whereas redL(-) and redK(-) mutants require addition of chemically synthesized UP for production of undecylprodiginine and streptorubin B. Fatty acid biosynthetic enzymes can provide dodecanoic acid, but efficient and selective prodiginine biosynthesis requires RedPQR. Deletion of redP, redQ, or redR leads to an 80%-95% decrease in production of undecylprodiginine and an array of prodiginine analogs with varying alkyl chains. In a redR(-) mutant, the ratio of these can be altered in a logical manner by feeding various fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号