首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An unsteady gas-particle flow in a hypersonic shock tunnel is studied numerically. The study is performed in the period from the instant when the diaphragm between the high-pressure and low-pressure chambers is opened until the end of the transition to a quasi-steady flow in the test section. The dispersed phase concentration is extremely low, and the collisions between the particles and their effect on the carrier gas flow are ignored. The particle size is varied. The time evolution of the particle concentration in the test section is obtained. Patterns of the quasi-steady flow of the dispersed phase in the throat of the Laval nozzle and the flow around a model (sphere) are presented. Particle concentration and particle velocity lag profiles at the test-section entrance are obtained. The particle-phase flow structure and the time needed for it to reach a quasi-steady regime are found to depend substantially on the particle size. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 102–113, September–October, 2008.  相似文献   

2.
A two-phase flow with high Reynolds numbers in the subsonic, transonic, and supersonic parts of the nozzle is considered within the framework of the Prandtl model, i.e., the flow is divided into an inviscid core and a thin boundary layer. Mutual influence of the gas and solid particles is taken into account. The Euler equations are solved for the gas in the flow core, and the boundary-layer equations are used in the near-wall region. The particle motion in the inviscid region is described by the Lagrangian approach, and trajectories and temperatures of particle packets are tracked. The behavior of particles in the boundary layer is described by the Euler equations for volume-averaged parameters of particles. The computed particle-velocity distributions are compared with experiments in a plane nozzle. It is noted that particles inserted in the subsonic part of the nozzle are focused at the nozzle centerline, which leads to substantial flow deceleration in the supersonic part of the nozzle. The effect of various boundary conditions for the flow of particles in the inviscid region is considered. For an axisymmetric nozzle, the influence of the contour of the subsonic part of the nozzle, the loading ratio, and the particle diameter on the particle-flow parameters in the inviscid region and in the boundary layer is studied. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 65–77, November–December, 2005.  相似文献   

3.
A supersonic dusty gas flow over a blunt body is considered. The mathematical model of the two-phase gas–particle flow takes into account the inter-particle collisions and the two-way coupling effects. The carrier gas is treated as a continuum, the averaged flow field of which is described by the complete Navier–Stokes equations with additional source terms modeling the reverse action of the dispersed phase. The dispersed phase is treated as a discrete set of solid particles, and its behavior is described by a kinetic Boltzmann-type equation. Particles impinging on the body surface are assumed to bounce from it. Numerical analysis is carried out for the cross-wise flow over a cylinder. The method of computational simulation represents a combination of a CFD-method for the carrier gas and a Monte Carlo method for the “gas” of particles. The dependence of the fine flow structure of the continuous and dispersed phases upon the free stream particle volume fraction αp∞ and the particle radius rp is investigated, particularly in the shock layer and in the boundary layer at the body surface. The particle volume fraction αp∞ is varied from a negligibly low value to the value αp∞ = 3 × 105 at which inter-particle collisions and two-way coupling effects are simultaneously essential. Particular attention has been given to the particles of radii close to the critical value rp1, because in this range of particle size the behavior of the particles and their effect on the carrier gas flow are not yet completely understood. An estimate of the turbulent kinetic energy produced by the particles in the shock layer is obtained.  相似文献   

4.
5.
Using the methods of statistical physics, the basic kinetic equation describing the dynamics of a polydisperse admixture of solid particles in a dilute dusty-gas flow is derived. Particle rotation, inelastic collisions, and interaction with the carrier gas are taken into account. The basic kinetic equation is used to obtain a Boltzmann-type equation for the one-particle distribution function, for which the boundary conditions for the problem of dusty-gas flow past a body are formulated. On the basis of the kinetic model developed, using direct statistical modeling, the flow patterns and the fields of the dispersed-phase macroparameters in a uniform crosswise dusty-gas flow past a cylinder are obtained for various free-stream particle sizes and concentrations. Sankt-Peterburg. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 81–97, May–June, 2000. The work received financial support from the Russian Foundation for Basic Research (projects 96-01-01467 and 99-01-00674).  相似文献   

6.
A Euler–Lagrangian simulation was employed for a comprehensive parameter study of wood gasification in a fluidized charcoal bed. The parameters that were varied include the initial bed temperature, fuel mass flow rate, inert tar fraction, and kinetic energy losses caused by particle–particle and particle–wall collisions. The results of each parameter variation are compared with a base scenario, previously described in detail in Part I of this study (Gerber & Oevermann, 2014). The results are interpreted by comparing the reactor outlet temperature, averaged particle temperature, overall wood mass, overall charcoal mass, concentrations of several gaseous species, and axial barycenter data for particles obtained with different sets of parameters. The inert tar fraction and fuel mass flow rate are the most sensitive parameter, while the particle–particle and particle–wall contact parameters have only a small impact on the results. Increasing the reactive tar components by 19% almost doubled the amount of reactive tars at the reactor outlet, while decreasing the restitution coefficients of the particle collisions by 0.2 results in higher overall gas production but almost no change in bed height. Herein, our numerical results are discussed in detail while assessing the model restrictions.  相似文献   

7.
8.
This paper presents results of a large eddy simulation (LES) combined with Lagrangian particle tracking and a point-force approximation for the feedback effect of particles on the downward turbulent gaseous flow in a vertical channel. The LES predictions are compared with the results obtained by direct numerical simulation (DNS) of a finer computational mesh. A parametric study is conducted for particles with two response times in simulations with and without streamwise gravitational settling and elastic, binary interparticle collisions. It is shown that the classical and the dynamic Smagorinsky turbulence models adequately predict the particle-induced changes in the mean streamwise velocity and the Reynolds stresses of the carrier phase for the range of parameters studied. However, the largest discrepancies between the LES and DNS results are found in the cases of particle-laden flows. Conditional sampling of the instantaneous resolved flow fields indicates that the mechanisms by which particles directly oppose the production of momentum and vorticity of the organized fluid motions are also observed in the LES results. However, the geometric features of the near-wall quasistreamwise vortices are overestimated by the use of both turbulence models compared to the DNS predictions.  相似文献   

9.
考虑颗粒间碰撞的气固两相流拉格朗日模拟   总被引:3,自引:3,他引:0  
在均匀,稳定的各向同性气固两相紊流场颗粒弥散的拉格朗日模拟计算方法基础上,进一步考虑了流场中颗粒之间的碰撞对于模拟计算结果的影响。与Lavieville用大涡模拟所做的计算结果进行了对比,以对本方法进行验证,并考察了颗粒间的碰撞分别对流体相和颗粒相的影响。  相似文献   

10.
The motion of an inertial dispersed admixture near a plane cylinder immersed in a steady-state hypersonic dusty flow in the presence of an oblique shock wave interacting with the bow shock is considered. It is assumed that the free-stream particle mass concentration is small and the particles do not affect the carrier flow. The III and IV shock wave interaction regimes are considered. The gas flow parameters in the shock layer are calculated from the numerical solution of the full Navier-Stokes equations for the perfect gas. A TVD second-order finite-difference scheme constructed on the basis of a finite volume method is used. For calculating the dispersed-phase parameters, including the concentration, the full Lagrangian method is used. On a wide range of variation of the particle inertia parameters, the patterns of the particle trajectories, velocity, concentration, and temperature in the shock layer are studied. The possibility of aerodynamic focusing of the particles behind the shock wave intersection point and the formation of narrow beams with a high particle concentration is revealed. These beams impinge on the cylinder surface and result in a sharp increase in the local heat fluxes. The maximal possible increase in the heat fluxes caused by the particles colliding with the cylinder surface is estimated for the flows with and without the incident oblique shock wave.  相似文献   

11.
The propagation of solid particle admixture in a flow through a flat channel is studied.The processes of diffusion and convective transfer as well as solid particle deposition due to gravity result in varying admixture concentration both in depth and longtitudinally.The study of admixture longitudinal distribution is of great interest in a lot of applications, therefore this paper gives the derivation of longitudinal diffusion equation for a mean cross-section admixture concentration.The equation contains three effective parameters; i.e. convective tranfer velocity, longitudinal diffusion coefficient and particle deposition time. These parameters integrally reflect local processes of matter transfer as well as momentum.The proposed model is specific and differs from Taylor equation for longitudinal diffusion, since the fact of particle deposition and adhesion is taken into account. As a result of particle deposition a sediment layer is formed on the channel bottom which increases in thickness with time. To describe this process balance conditions for the whole flow mass and admixture mass on sediment sediment surface are formulated and a condition for matter movement towards the channel bottom is derived that is different from zero due to particle adhesion.  相似文献   

12.
侯金亮  王力  李昌烽 《力学季刊》2015,36(3):391-398
结合雷诺应力模型 (Reynolds Stress Model, RSM) 和混合模型 (Mixture Model) 对槽道湍流向下流动中的颗粒调制湍流问题进行了研究.该模型考虑了颗粒流的动能理论和颗粒对湍流的反馈作用.着重分析了颗粒对湍流的调制作用,以及颗粒参数变量(如颗粒密度和质量载荷)对湍流调制的影响.结果表明:(1)在颗粒抑制湍流的范围内,当颗粒密度小于载流体密度时,湍流强度的改变量与颗粒密度成反比;当颗粒密度大于载流体密度时,湍流强度的改变量与颗粒密度成正比;(2)在一定范围内,颗粒抑制湍流的能力随颗粒质量载荷增加而变强.  相似文献   

13.
The motion of a dispersed inertial admixture in a steady-state axisymmetric 3D viscous incompressible flow formed by a semi-infinite vortex filament interacting with an orthogonally located substrate surface is considered. The carrier-phase parameters are found from the numerical solution of the Navier-Stokes equations under the assumption of flow self-similarity of a known type [1]. Different phase force interaction schemes corresponding to different ratios of the phase densities are considered. For calculating the dispersed-phase continuum parameters, a full Lagrangian approach is used, which makes it possible to calculate the dispersed-phase concentration in particle accumulation zones and regions of intersecting particle trajectories. On the basis of parametric calculations, it is found that in the case of heavy particles (whose density is greater than that of the carrier phase) a “cup-shaped” particle accumulation surface visualizing a high-vorticity region is formed. The dependence of this surface shape on the governing parameters is investigated. It is shown that for different phase density ratios the dispersed-phase concentration fields are qualitatively different.  相似文献   

14.
15.
A mathematical model of a slot sampler is proposed and the aspiration coefficient and the particle concentration field are studied numerically for the problem of aerosol aspiration from a moving gas. In the absence of a particle effect on the gas, the carrier flow is calculated in the viscous incompressible fluid approximation using the FLUENT program package for solving the Navier-Stokes equations. The particle motion equations are supplemented by the equations for determining the particle concentration along the particle trajectories. The particle concentration distribution in the neighborhood of and inside the slot sampler is investigated. Parametric studies of the aspiration coefficient as a function of the ratio of the wind velocity and the aspiration rate are carried out for different Stokes numbers.  相似文献   

16.
The results of an experimental investigation and numerical simulation of a gasdynamic structure formed as a result of supersonic flow past a pulsating thermal source are presented. Heat was supplied to the flow by producing a limited plasma volume as a result of the breakdown of the focused radiation of a CO2 laser operating in the pulse periodic regime. On the basis of the experimental data obtained, a thermal source model was developed and accepted for further numerical calculations. The calculations were carried out within the framework of the inviscid gas model using the TVD scheme and nonreflecting boundary conditions. The effect of the relevant gasdynamic and energetic parameters on the flow pattern associated with the studied phenomenon is established. Data on the flow parameter distributions in the wake of the thermal source are obtained as a function of the freestream Mach number.  相似文献   

17.
Fully-developed steady flow of granular material down an inclined chute has been a subject of much research interest, but the effect of the interstitial gas has usually been ignored. In this paper, new expressions for the drag force and energy dissipation caused by the interstitial gas (ignoring the turbulent fluctuations of the gas phase) are derived and used to modify the governing equations derived from the kinetic theory approach for granular–gas mixture flows, where particles are relatively massive so that velocity fluctuations are caused by collisions rather than the gas flow. This new model is applied to fully-developed, steady mixture flows down an inclined chute and the results are compared with other simulations. Our results show that the effect of the interstitial gas plays a significant role in modifying the characteristics of fully developed flow. Although the effect of the interstitial gas is less pronounced for large particles than small ones, the flowfields with large particles are still very different from granular flows which do not incorporate any interactions with the interstitial gas.  相似文献   

18.
The parameters of an axisymmetric turbulent two-phase swirling flow of a viscous heat-conducting gas containing a liquid dispersed phase in the presence of water vapor condensation on the particles are calculated. For the dispersed phase, a model taking into account the variation of the vapor concentration and the particle size due to condensation or evaporation is proposed. The distributions of the parameters of the basic unperturbed flow obtained numerically are used in the numerical solution of the linear problem of hydrodynamic stability within the time-dependent formulation. The parameters of small-amplitude harmonic perturbations propagating along the vortex axis are investigated in the linear formulation. A significant effect of heat release in the gas due to water vapor condensation on the parameters of the neutral perturbations and the neutral-stability curves is detected.  相似文献   

19.
A continuum model for two-phase (fluid/particle) flow induced by natural convection is developed and applied to the problem of steady natural convention flow of a particulate suspension through an infinitely long channel. The walls of the channel are maintained at constant but different temperatures. The two-phase model accounts for particle-phase viscous effects. Boundary conditions borrowed from rarefied gas dynamics are employed for the particle-phase wall conditions. Various closed-form solutions for different special cases are obtained. A parametric study of the physical parameters involved in the problem are performed to illustrate the influence of these parameters on the flow and heat transfer aspects of the problem.  相似文献   

20.
In this work, structural finite element analyses of particles moving and interacting within high speed compressible flow are directly coupled to computational fluid dynamics and heat transfer analyses to provide more detailed and improved simulations of particle laden flow under these operating conditions. For a given solid material model, stresses and displacements throughout the solid body are determined with the particle–particle contact following an element to element local spring force model and local fluid induced forces directly calculated from the finite volume flow solution. Plasticity and particle deformation common in such a flow regime can be incorporated in a more rigorous manner than typical discrete element models where structural conditions are not directly modeled. Using the developed techniques, simulations of normal collisions between two 1 mm radius particles with initial particle velocities of 50–150 m/s are conducted with different levels of pressure driven gas flow moving normal to the initial particle motion for elastic and elastic–plastic with strain hardening based solid material models. In this manner, the relationships between the collision velocity, the material behavior models, and the fluid flow and the particle motion and deformation can be investigated. The elastic–plastic material behavior results in post collision velocities 16–50% of their pre-collision values while the elastic-based particle collisions nearly regained their initial velocity upon rebound. The elastic–plastic material models produce contact forces less than half of those for elastic collisions, longer contact times, and greater particle deformation. Fluid flow forces affect the particle motion even at high collision speeds regardless of the solid material behavior model. With the elastic models, the collision force varied little with the strength of the gas flow driver. For the elastic–plastic models, the larger particle deformation and the resulting increasingly asymmetric loading lead to growing differences in the collision force magnitudes and directions as the gas flow strength increased. The coupled finite volume flow and finite element structural analyses provide a capability to capture the interdependencies between the interaction of the particles, the particle deformation, the fluid flow and the particle motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号