首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The current paper is devoted to the study of traveling wave solutions of spatially homogeneous monostable reaction diffusion equations with ergodic or recurrent time dependence, which includes periodic and almost periodic time dependence as special cases. Such an equation has two spatially homogeneous and time recurrent solutions with one of them being stable and the other being unstable. Traveling wave solutions are a type of entire solutions connecting the two spatially homogeneous and time recurrent solutions. Recently, the author of the current paper proved that a spatially homogeneous time almost periodic monostable equation has a spreading speed in any given direction. This result can be easily extended to monostable equations with recurrent time dependence. In this paper, we introduce generalized traveling wave solutions for time recurrent monostable equations and show the existence of such solutions in any given direction with average propagating speed greater than or equal to the spreading speed in that direction and non-existence of such solutions of slower average propagating speed. We also show the uniqueness and stability of generalized traveling wave solutions in any given direction with average propagating speed greater than the spreading speed in that direction. Moreover, we show that a generalized traveling wave solution in a given direction with average propagating speed greater than the spreading speed in that direction is unique ergodic in the sense that its wave profile and wave speed are unique ergodic, and if the time dependence of the monostable equation is almost periodic, it is almost periodic in the sense that its wave profile and wave speed are almost periodic.  相似文献   

2.
A technique for dimensional reduction of nonlinear delay differential equations (DDEs) with time-periodic coefficients is presented. The DDEs considered here have a canonical form with at most cubic nonlinearities and periodic coefficients. The nonlinear terms are multiplied by a perturbation parameter. Perturbation expansion converts the nonlinear response problem into solutions of a series of nonhomogeneous linear ordinary differential equations (ODEs) with time-periodic coefficients. One set of linear nonhomogeneous ODEs is solved for each power of the perturbation parameter. Each ODE is solved by a Chebyshev spectral collocation method. Thus we compute a finite approximation to the nonlinear infinite-dimensional map for the DDE. The linear part of the map is the monodromy operator whose eigenvalues characterize stability. Dimensional reduction on the map is then carried out. In the case of critical eigenvalues, this corresponds to center manifold reduction, while for the noncritical case resonance conditions are derived. The accuracy of the nonlinear Chebyshev collocation map is demonstrated by finding the solution of a nonlinear delayed Mathieu equation and then a milling model via the method of steps. Center manifold reduction is illustrated via a single inverted pendulum including both a periodic retarded follower force and a nonlinear restoring force. In this example, the amplitude of the limit cycle associated with a flip bifurcation is found analytically and compared to that obtained from direct numerical simulation. The method of this paper is shown by example to be applicable to systems with strong parametric excitations.  相似文献   

3.
In this paper, we concentrate on the study of a reaction–diffusion equation with spatiotemporal delay and homogeneous Dirichlet boundary condition. It is shown that a positive spatially nonhomogeneous equilibrium can bifurcate from the trivial equilibrium. Moreover, the stability of the bifurcated positive equilibrium is investigated. And we prove that, for the given spatiotemporal delay, the bifurcated equilibrium is stable under some conditions, and Hopf bifurcation cannot occur.  相似文献   

4.
In this paper, a ratio-dependent predator–prey model with diffusion is considered. The stability of the positive constant equilibrium, Turing instability, and the existence of Hopf and steady state bifurcations are studied. Necessary and sufficient conditions for the stability of the positive constant equilibrium are explicitly obtained. Spatially heterogeneous steady states with different spatial patterns are determined. By calculating the normal form on the center manifold, the formulas determining the direction and the stability of Hopf bifurcations are explicitly derived. For the steady state bifurcation, the normal form shows the possibility of pitchfork bifurcation and can be used to determine the stability of spatially inhomogeneous steady states. Some numerical simulations are carried out to illustrate and expand our theoretical results, in which, both spatially homogeneous and heterogeneous periodic solutions are observed. The numerical simulations also show the coexistence of two spatially inhomogeneous steady states, confirming the theoretical prediction.  相似文献   

5.
Liao  Xiaofeng  Li  Shaowen  Wong  Kwok-wo 《Nonlinear dynamics》2003,31(3):299-326
In this paper, a more general two-neuron model with distributed delays and weak kernel is investigated. By applying the frequency domain approach and analyzing the associated characteristic equation, the existence of bifurcation parameter point is determined. Furthermore, we found that if the mean delay is used as a bifurcation parameter, Hopf bifurcation occurs for the weak kernel. This means that a family of periodic solutions bifurcates from the equilibrium when the bifurcation parameter exceeds a critical value. The direction and stability of the bifurcating periodic solutions are determine by the Nyquist criterion and the graphical Hopf bifurcation theorem. Some numerical simulations for justifying the theoretical analysis are also given.  相似文献   

6.
Concerns double homoclinic loops with orbit flips and two resonant eigen- values in a four-dimensional system.We use the solution of a normal form system to construct a singular map in some neighborhood of the equilibrium,and the solution of a linear variational system to construct a regular map in some neighborhood of the double homoclinic loops,then compose them to get the important Poincarémap.A simple cal- culation gives explicitly an expression of the associated successor function.By a delicate analysis of the bifurcation equation,we obtain the condition that the original double homoclinic loops are kept,and prove the existence and the existence regions of the large 1-homoclinic orbit bifurcation surface,2-fold large 1-periodic orbit bifurcation surface, large 2-homoclinic orbit bifurcation surface and their approximate expressions.We also locate the large periodic orbits and large homoclinic orbits and their number.  相似文献   

7.
The general Brusselator system is considered under homogeneous Neumann boundary conditions. The existence results of the Hopf bifurcation to the ordinary differential equation (ODE) and partial differential equation (PDE) models are obtained. By the center manifold theory and the normal form method, the bifurcation direction and stability of periodic solutions are established. Moreover, some numerical simulations are shown to support the analytical results. At the same time, the positive steady-state solutions and spatially inhomogeneous periodic solutions are graphically shown to supplement the analytical results.  相似文献   

8.
We consider solutions bifurcating from a spatially homogeneous equilibrium under the assumption that the associated linearization possesses a continuous spectrum up to the imaginary axis, for all values of the bifurcation parameter, and that a pair of imaginary eigenvalues crosses the imaginary axis. For a reaction-diffusion-convection system we investigate the nonlinear stability of the trivial solution with respect to spatially localized perturbations, prove the occurrence of a Hopf bifurcation and the nonlinear stability of the bifurcating time-periodic solutions, again with respect to spatially localized perturbations.  相似文献   

9.
IntroductionIn 1 958,GentandLindleyobservedthephenomenonofsuddenvoidnucleationinsolidsexperimentallyintensioningahomogenousclose_grainedvulcanizedrubbercylinderforthefirsttime.ButthemathematicalmodelonvoidnucleationandgrowthhasnotbeendescribedasabifurcationproblembasedonthetheoryofnonlinearelasticmechanicsbyBall[1]until1 982 .Inrecentyears,manyinvestigationshavebeenmadeonthisaspect.Theproblemofcavitatedbifurcationforincompressibleisotropichyperelasticmaterialswithpower_lawtypehasbeeninvestig…  相似文献   

10.
In this paper, the spatiotemporal patterns of a reaction–diffusion substrate–inhibition chemical Seelig model are considered. We first prove that this parabolic Seelig model has an invariant rectangle in the phase plane which attracts all the solutions of the model regardless of the initial values. Then, we consider the long time behaviors of the solutions in the invariant rectangle. In particular, we prove that, under suitable “lumped parameter assumption” conditions, these solutions either converge exponentially to the unique positive constant steady states or to the spatially homogeneous periodic solutions. Finally, we study the existence and non-existence of Turing patterns. To find parameter ranges where system does not exhibit Turing patterns, we use the properties of non-constant steady states, including obtaining several useful estimates. To seek the parameter ranges where system possesses Turing patterns, we use the techniques of global bifurcation theory. These two different parameter ranges are distinguished in a delicate bifurcation diagram. Moreover, numerical experiments are also presented to support and strengthen our analytical analysis.  相似文献   

11.
We show how the existence and uniqueness of Riemann solutions are affected by the precise form of viscosity which is used to select shock waves admitting a viscous profile. We study a complete list of codimension-1 bifurcations that depend on viscosity and distinguish between Lax shock waves with and without a profile. These bifurcations are the saddle–saddle heteroclinic bifurcation, the homoclinic bifurcation, and the nonhyperbolic periodic orbit bifurcation. We prove that these influence the existence and uniqueness of Riemann solutions and affect the number and type of waves comprising a Riemann solution. We present generic situations in which viscous Riemann solutions differ from Lax solutions.  相似文献   

12.
Emaci  E.  Vakakis  A. F.  Andrianov  I. V.  Mikhlin  Yu. 《Nonlinear dynamics》1997,13(4):327-338
We analyze axisymmetric, spatially localized standing wave solutions with periodic time dependence (breathers) of a nonlinear partial differential equation. This equation is derived in the 'continuum approximation' of the equations of motion governing the anti-phase vibrations of a two-dimensional array of weakly coupled nonlinear oscillators. Following an asymptotic analysis, the leading order approximation of the spatial distribution of the breather is shown to be governed by a two-dimensional nonlinear Schrödinger (NLS) equation with cubic nonlinearities. The homoclinic orbit of the NLS equation is analytically approximated by constructing [2N × 2N] Padé approximants, expressing the Padé coefficients in terms of an initial amplitude condition, and imposing a necessary and sufficient condition to ensure decay of the Padé approximations as the independent variable (radius) tends to infinity. In addition, a convergence study is performed to eliminate 'spurious' solutions of the problem. Computation of this homoclinic orbit enables the analytic approximation of the breather solution.  相似文献   

13.
Smoothed Particle Hydrodynamics Model for Diffusion through Porous Media   总被引:2,自引:0,他引:2  
Zhu  Yi  Fox  Patrick J. 《Transport in Porous Media》2001,43(3):441-471
A smoothed particle hydrodynamics (SPH) model is presented for the study of diffusion in spatially periodic porous media. The method of SPH is formulated to solve the convection–diffusion equation for tracer diffusion under steady state and transient conditions. Solutions obtained using SPH are compared with other available solutions and the model is used to calculate diffusion coefficients of spatially periodic porous media for the steady state diffusion problem. Diffusion coefficients are then used to calculate nondimensional diffusivities of the media. The effects of media properties on the values of nondimensional diffusivity are also presented.  相似文献   

14.
For a spatial modulation of the control parameter which describes, for instance, major effects of a rough container boundary in Rayleigh–Bénard convection, the threshold value of the bifurcation from a homogeneous basic state to a spatially periodic state is provided analytically and numerically, taking the one-dimensional cubic–quintic complex Ginzburg–Landau equation with real coefficients as an example. Above the threshold, using the Poincaré–Lindstedt expansion, we show that the quintic term affects both the stationary nonlinear solution and the Nusselt number.  相似文献   

15.
Algaba  A.  Freire  E.  Gamero  E.  Rodríguez-Luis  A. J. 《Nonlinear dynamics》1998,16(4):369-404
We analyze a modified van der Pol–Duffing electronic circuit, modeled by a tridimensional autonomous system of differential equations with Z2-symmetry. Linear codimension-one and two bifurcations of equilibria give rise to several dynamical behaviours, including periodic, homoclinic and heteroclinic orbits. The local analysis provides, in first approximation, the different bifurcation sets. These local results are used as a guide to apply the adequate numerical methods to obtain a global understanding of the bifurcation sets. The study of the normal form of the Hopf bifurcation shows the presence of cusps of saddle-node bifurcations of periodic orbits. The existence of a codimension-four Hopf bifurcation is also pointed out. In the case of the Takens–Bogdanov bifurcation, several degenerate situations of codimension-three are analyzed in both homoclinic and heteroclinic cases. The existence of a Hopf–Shil'nikov singularity is also shown.  相似文献   

16.
This work presents the analytical solution and temporal moments of one-dimensional advection–diffusion model with variable coefficients. Two case studies along with the two different sets of boundary conditions are considered at the inlet and outlet of the domain. In the first case, a time-dependent solute dispersion in the homogeneous domain along uniform flow is taken into account, whereas in the second case, due to inhomogeneity of domain, velocity is taken spatially dependent and the dispersion is assumed proportional to the square of the velocity. The Laplace transform is used to obtain the analytical solutions. The analytical temporal moments are derived from the Laplace domain solutions. To verify the correctness of the analytical solutions, a high-resolution second-order finite volume scheme is applied. Different case studies are considered and discussed. Both analytical and numerical results are in good agreement with each other.  相似文献   

17.
Homoclinic bifurcation at resonant eigenvalues   总被引:10,自引:0,他引:10  
We consider a bifurcation of homoclinic orbits, which is an analogue of period doubling in the limit of infinite period. This bifurcation can occur in generic two parameter vector fields when a homoclinic orbit is attached to a stationary point with resonant eigenvalues. The resonance condition requires the eigenvalues with positive/negative real part closest to zero to be real, simple, and equidistant to zero. Under an additional global twist condition, an exponentially flat bifurcation of double homoclinic orbits from the primary homoclinic branch is established rigorously. Moreover, associated period doublings of periodic orbits with almost infinite period are detected. If the global twist condition is violated, a resonant side switching occurs. This corresponds to an exponentially flat bifurcation of periodic saddle-node orbits from the homoclinic branch.Partially supported by DARPA and NSF.Partially supported by the Deutsche Forschungsgemeinschaft and by Konrad-Zuse-Zentrum für Informationstechnik Berlin.  相似文献   

18.
We consider an autoparametric system consisting of an oscillator coupled with an externally excited subsystem. The oscillator and the subsystem are in one-to-one internal resonance. The excited subsystem is in primary resonance. The method of second-order averaging is used to obtain a set of autonomous equations of the second-order approximations to the externally excited system with autoparametric resonance. The Šhilnikov-type homoclinic orbits and chaotic dynamics of the averaged equations are studied in detail. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Šhilnikov-type homoclinic orbits in the averaged equations. The results obtained above mean the existence of the amplitude-modulated chaos for the Smale horseshoe sense in the externally excited system with autoparametric resonance. Furthermore, a detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Nine branches of dynamic solutions are found. Two of these branches emerge from two Hopf bifurcations and the other seven are isolated. The limit cycles undergo symmetry-breaking, cyclic-fold and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging and boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, intermittency chaos and homoclinic explosions are also observed.  相似文献   

19.
The bifurcations and chaotic dynamics of parametrically and externally excited suspended cables are investigated in this paper. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The Galerkin procedure is introduced to simplify the governing equations of motion to ordinary differential equations with two-degree-of-freedom. The case of one-to-one internal resonance between the modes of suspended cables, primary resonant excitation, and principal parametric excitation of suspended cables is considered. Using the method of multiple scales, a parametrically and externally excited system is transformed to the averaged equations. A pseudo arclength scheme is used to trace the branches of the equilibrium solutions and an investigation of the eigenvalues of the Jacobian matrix is used to assess their stability. The equilibrium solutions experience pitchfork, saddle-node, and Hopf bifurcations. A detailed bifurcation analysis of the dynamic (periodic and chaotic) solutions of the averaged equations is presented. Five branches of dynamic solutions are found. Three of these branches that emerge from two Hopf bifurcations and the other two are isolated. The two Hopf bifurcation points, one is supercritical Hopf bifurcation point and another is primary Hopf bifurcation point. The limit cycles undergo symmetry-breaking, cyclic-fold, and period-doubling bifurcations, whereas the chaotic attractors undergo attractor-merging, boundary crises. Simultaneous occurrence of the limit cycle and chaotic attractors, homoclinic orbits, homoclinic explosions and hyperchaos are also observed.  相似文献   

20.
Phase waves rotating in a ring of unidirectionally coupled parametric oscillators are studied. The system has a pair of spatially uniform stable periodic solutions with a phase difference and an unstable quasiperiodic traveling phase wave solution. They are generated from the origin through a period doubling bifurcation and the Neimark?CSacker bifurcation, respectively. In transient states, phase waves rotating in a ring are generated, the duration of which increases exponentially with the number of oscillators (exponential transients). A power law distribution of the duration of randomly generated phase waves and the noise-sustained propagation of phase waves are also shown. These properties of transient phase waves are well described with a kinematical equation for the propagation of wave fronts. Further, the traveling phase wave is stabilized through a pitchfork bifurcation and changes into a standing wave through pinning. These bifurcations and exponential transient rotating waves are also shown in an autonomous system with averaging and a coupled map model, and they agree with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号