首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
The first dynamic holography recording using 14-fluoro-(14-F) bacteriorhodopsin (BR) gelatin films has been achieved. 14-F BR is an artificial BR pigment made by reconstitution of bacterioopsin (native BR without chromophore) with synthetic 14-F retinal. Low-intensity red light from a cw He-Ne laser was used for dynamic holography recording on the 14-F wild type (WT) BR and 14-F D96N mutant BR in gelatin films. There is not true comparing the diffraction efficiency for 14-F D96N BR and 14-F WT gelatin film, unlike the increased diffraction efficiency for D96N BR gelatin film with native chromophore relative to the WT BR gelatin film with native chromophore. Pre-illumination with blue light of the 14-F BR gelatin films significantly increases the diffraction efficiency of both the 14-F WT and the 14-F D96N BR pigments. The sequential application of blue and red laser beams indicates that 14-F BR gelatin films can be useful for optical memory.  相似文献   

2.
The process of photoinduced hydroxylaminolysis has been re-examined in different bacteriorhodopsin (BR)-based media using O-substituted hydroxylamines, in particular, O-(4-nitrobenzyl) hydroxylamine hydrochloride (NBHA), O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride (FBHA) and O-(t-butyl) hydroxylamine hydrochloride (BHA). Both wild type (WT) and D96N BR-based gelatine films and gels were studied. The expected increase in the bleaching rate of BR in gelatin films by using O-substituted hydroxylamines in place of HA was not achieved. On the other hand, it was shown that in gels HA derivatives NBHA and FBHA (as against HA itself) do provide about three- to four-fold higher bleaching rate. By contrast to that in films, D96N BR in gels demonstrates more effective bleaching as compared to WT BR. The plausible interpretation for the results is discussed in frames of reduced mobilities of large-sized molecules of O-substituted hydroxylamines in dehydrated media. FBHA- or NBHA-modified gels possess higher photosensitivity both with D96N and WT BR (as compared with that for HA-modified gels) and offer a potentiality for application as an irreversible-recording medium. As anticipated, it is specifically D96N BR gel modified with FBHA that may present a promising medium suitable for write-once recording thus extending the range of recording materials in the optical processing field.  相似文献   

3.
This work examines the kinetics of dynamic holography responses in light-adapted and dark-adapted bacteriorhodopsin (BR) films at different humidity. We have demonstrated that the kinetics of the diffraction efficiency in wild type BR films is quite different in dark-adapted and light-adapted samples. The holographic recording kinetics, which depends on the duration of incubation in the dark after light adaptation at different humidity values, was studied in depth. A specially designed miniature cell containing a BR film was mounted inside the holographic set up to allow controlled humidity changes over a broad range. The diffraction efficiency kinetics at humidity values of 96-99% were quite different from the kinetics at 60-93% humidity. We found that humidity values of 90-93% were most optimal for dynamic holography recording using a gelatin film containing BR. In agreement with a calculation of the wavelength-dependent changes of the refractive index for dark-adapted and light-adapted BR samples using the Kramers-Kronig relation, the maximum difference in the refractive index and thus in the diffraction efficiency for dark-adapted and light-adapted BR films takes place at 630 nm, close to the wavelength of the He-Ne laser used.  相似文献   

4.
Proton release and subsequent uptake by several forms of bacteriorhodopsin (bR), including 4-keto analogs of wild-type (WT) and D96N and D85N mutants as well as the 9-demethylretinal analog of WT and D96N mutants, have been measured using a highly sensitive electrochemical technique. Release and uptake of protons by bR in membrane patches on a tin oxide electrode produce a current transient whose amplitude is proportional to the rate of pH change at the electrode surface. Profiles of proton release by the analogs vs. pH are substantially different from the profiles of the native proteins.  相似文献   

5.
We report the direct measurement of photoinduced surface potential differences of wild-type (WT) and mutant D96N bacteriorhodopsin (BR) membranes at pH 7 and 10.5. Atomic force microscopy (AFM) and scanning surface potential microscopy (SSPM) were used to measure the BR membrane with the extracellular side facing up. We present AFM and SSPM images of WT and mutant D96N in which the light-dark transition occurred in the mid-scan of a single BR membrane. Photosteady-state populations of the M state were generated to facilitate measurement in each sample. The photoinduced surface potential of D96N is 63 mV (peak to valley) at pH 10.5 and is 48 mV at pH 7. The photoinduced surface potential of WT is 37 mV at pH 10.5 and approximately 0 at pH 7. Signal magnitudes are proportional to the amount of M produced at each pH. The results indicated that the surface potentials were generated by photoformation of surface charges on the extracellular side of the membrane. Higher surface potential correlated with a longer lifetime of the charges. A mechanistic basis for these signals is proposed, and it is concluded that they represent a steady-state measurement of the B2 photovoltage.  相似文献   

6.
In the D85N mutant of the protein bacteriorhodopsin (BR), the Schiff base, by which the retinal chromophore is bound to the protein, exhibits an abnormally low proton affinity (pKa approximately 8.9). Recent experiments on thin films of this protein have shown that this causes the protonation state of the Schiff base, and thus the visible absorption spectrum, to be sensitive to external electric fields. In this paper, we explore the dependence of this effect on parameters such as pH, humidity, and film thickness. The results of these experiments point to the importance of water molecules bound in the acceptor part of the proton channel as sources and donors in field-induced proton-transfer reactions. We describe additional results obtained with the D85,96N mutant, which also exhibits a low Schiff-base pK. The similar behavior of the two mutants under applied electric fields at high pH implies that the residue Asp-96 plays no role in field-induced Schiff-base protonation.  相似文献   

7.
Transient holographic diffraction is observed for the green (GPR) and blue (BPR) absorbing proteorhodopsins (BAC31A8 and HOT75M1, respectively), as well as the GPR E108Q and BPR E110Q variants. In contrast to bacteriorhodopsin, where the metastable bR-M pair is responsible for generating diffraction, the pR and red-shifted N-like states fulfill that role in both the green and blue wild-type proteorhodopsins. The GPR E108Q and BPR E110Q variants, however, behave more similarly to their bacteriorhodopsin analogue, D96N, with diffraction arising from the PR M-state (strongly enhanced in both GPR E108Q and BPR E110Q). Of the four proteins evaluated, wild type (WT) GPR and GPR E108Q produce the highest diffraction efficiencies, etamax, at approximately 1% for a 1.7 OD sample. GPR E108Q, however, requires 1-2 orders of magnitude less laser intensity to generate eta equivalent to WT GPR and BR D96N under similar conditions (as compared to literature values). WT BPR requires lower actinic powers than GPR but diffracts only about 30% as well. BPR E110Q performs the most poorly of the four, with etamax < 0.05% for a 1.4 OD film. The Kramers-Kronig transformation and Koglenik's coupled wave theory were used to predict the dispersion spectra and diffraction efficiency for the long M-state variants. To a first approximation, the gratings formed by all samples decay upon discontinuing the 520 nm actinic beams with a time constant characteristic of the appropriate intermediate: the N-like state for WT GPR and BPR and the M-state for GPR 108Q and BPR E110Q.  相似文献   

8.
The photocycle of the proton pump bacteriorhodopsin contains two consecutive intermediates in which the retinal Schiff base is unprotonated; the reaction between these states, termed M1 and M2, was suggested to be the switch in the proton transport which reorients the Schiff base from D85 on the extracellular side to D96 on the cytoplasmic side (Váró and Lanyi, Biochemistry 30, 5016-5022, 1991). At pH 10 the absorption maxima of both M1 and M2 could be determined in the recombinant D96N protein. We find that M1 absorbs at 411 nm as do M1 and M2 in wild-type bacteriorhodopsin, but M2 absorbs at 404 nm. Thus, in M2 but not M1 the unprotonated Schiff base is affected by the D96N residue replacement. The connectivity of the Schiff base to D96 in the detected M2 state, but not in M1, is thereby established. On the other hand, the photostationary state which develops during illumination of D85N bacteriorhodopsin contains an M state corresponding to M1 with an absorption maximum shifted to 400 nm, suggesting that this species in turn is affected by D85. These results are consistent with the suggestion that M1 and M2 are pre-switch and post-switch states, respectively.  相似文献   

9.
The proton channels of the bacteriorhodopsin (BR) proton pump contain bound water molecules. The channels connect the purple membrane surfaces with the protonated retinal Schiff base at the membrane center. Films of purple membrane equilibrated at low relative humidity display a shift of the 570 nm retinal absorbance maximum to 528 nm, with most of the change occurring below 15% relative humidity. Purple membrane films were dehydrated to defined humidities between about 50 and 4.5% and examined by Fourier transform infrared difference spectroscopy. In spectra of dehydrated-minus-hydrated purple membrane, troughs are observed at 3645 and 3550 cm-1, and peaks are observed at 3665 and 3500 cm-1. We attribute these changes to water dissociation from the proton uptake channel and the resulting changes in hydrogen bonding of water that remains bound. Also, in the carboxylic acid spectral region, a trough was observed at 1742 cm-1 and a peak at 1737 cm-1. The magnitude of the trough to peak difference between 1737 and 1742 cm-1 correlates linearly with the extent of the 528 nm pigment. This suggests that a carboxylic acid group or groups is undergoing a change in environment as a result of dehydration, and that this change is linked to the appearance of the 528 nm pigment. Dehydration difference spectra with BR mutants D96N and D115N show that the 1737-1742 cm-1 change is due to Asp 96 and Asp 115. A possible mechanism is suggested that links dissociation of water in the proton uptake channel to the environmental change at the Schiff base site.  相似文献   

10.
Abstract— The reorientational motions of the D96N and T46V/D96N mutants of bacteriorhodopsin in purple membrane have been investigated by time-resolved linear dichroism measurements. The reorientations in the early stages of the photocycle are identical to those observed in wild-type bacteriorhodopsin: anisotropics of photocycle intermediates in both D96N and T46V/D96N are rK= 0.38±0.01, rL= 0.35±0.01, rM= 0.35±0.01. The anisotropy of the initial state, rBR, exhibits decays to zero in D96N and to negative values in T46V/D96N on the time scale of tens of milliseconds. This anisotropy decay can be explained by a model that involves the motion of unexcited or spectator proteins adjacent to a photocycling protein. The amplitude and time constants of spectator reorientational motion are similar to those that have been observed in the wild type. Contributions from the anisotropy of the N-state were detected in measurements of the T46V/D96N mutant, in which a large N-state population accumulates. The value of rN is estimated to be 0.30±0.05 in T46V/D96N.  相似文献   

11.
A series of the mutant proteins (D96N, D96N/D85N, D115N, L93T, T46V, V49A) where the residues are located at the cytoplasmic domain of bacteriorhodopsin (bR) were studied photoelectrochemically and their photocurrent response characteristics at the electrode/electrolyte interface were compared with those of the wild-type bR. While the wild-type bR of normal proton pumping activity yields symmetrical cathodic (positive) and anodic (negative) responses, corresponding to proton release and proton uptake, respectively, these mutants, with the exception of D115N, showed diminished amplitudes in the negative response. This indicates retardation of proton translocation from the cytoplasmic surface to the retinal Schiff base. The mutation that gave the strongest influence on the negative response was D96N while moderate influence was obtained with L93T, T46V, and V49A. These results suggest that residues other than D96 also participate in the cytoplasmic proton uptake channel, either by interacting with D96 directly or by forming a hydrogen-bonded network with water molecules. The D96N/D85N double mutant yielded little response at neutral pH, but the response was partially recovered by addition of azide, while it was fully recovered in the single mutant D96N. The D115N mutant showed the response profile that closely resembles the wild-type, indicating that D115 is not crucially involved in the event of proton transfer relay at the cytoplasmic region. It was also found that every mutant in this study releases protons prior to uptake at the other membrane surface, as does the wild-type.  相似文献   

12.
The back photoreaction of the M intermediate in the photocycle of bacteriorhodopsin is investigated both for the native pigment and its D96N mutant. The experimental setup is based on creating the M intermediate by a first pulse, followed by a (blue) laser pulse which drives the back photoreaction of M. Experiments are carried out varying the delay between the two pulses, as well as the temperature over the -25 degrees C-20 degrees C range. It is found that the kinetic patterns of the M back photoreaction change with time after the generation of this intermediate. The data provide independent evidence for the suggestion of a photocycle mechanism based on two distinct M intermediates. They are thus in keeping with the consecutive model of Varo and Lanyi (Biochemistry 30, 5016-5022; 1991), although they cannot exclude other models such as those based on branched or parallel cycles. More generally, we offer a "photochemical" approach to discriminating between intermediate stages in the photocycle which does not depend on spectroscopic and/or kinetic data. While markedly affecting the rate of the M --> N transition in the photocycle, the rate of the thermal step in back photoreaction of M, at both room and low temperatures, is not significantly affected by the D96N mutation. It is proposed that while Asp 96 is the Schiff-base protonating moiety in the M --> N transition, another residue (most probably Asp 85) reprotonates the Schiff base following light absorption by M.  相似文献   

13.
Detergent solubilized bacteriorhodopsin (BR) proteins which contain alterations made by site-directed mutagenesis (Asp-96----Asn, D96N; Asp-85----Asn, D85N; and Arg-82----Gln, R82Q) have been studied with resonance Raman spectroscopy. Raman spectra of the light-adapted (BRLA) and M species in D96N are identical to those of native BR, indicating that this residue is not located near the chromophore. The BRLA states of D85N and especially R82Q contain more of the 13-cis, C = N syn (BR555) species under ambient illumination compared to solubilized native BR. Replacement of Asp-85 with Asn causes a 25 nm red-shift of the absorption maximum and a frequency decrease in both the ethylenic (-7 cm-1) and the Schiff base C = NH+ (-3 cm-1) stretching modes of BRLA. These changes indicate that Asp-85 is located close to the protonated retinal Schiff base. The BRLA spectrum of R82Q exhibits a slight perturbation of the C = NH+ band, but its M spectrum is unperturbed. The Raman spectra and the absorption properties of D85N and R82Q suggest that the protein counterion environment involves the residues Asp-85-, Arg-82+ and presumably Asp-212-. These data are consistent with a model where the strength of the protein-chromophore interaction and hence the absorption maximum depends on the overall charge of the Schiff base counterion environment.  相似文献   

14.
The D96N mutant form of bacteriorhodopsin (BR) purple membrane fragments isolated from the bacteriumHalobacterium salinarium has been immobilized by entrapment in sol-gel glass. The protein was characterized for M state decay rate at different temperatures and pH values. Bleaching efficiency and absorbance maxima vs pH were also determined. The kinetic effects of triethanolamine and diethanolamine were also examined. Results indicated that the immobilized BR was affected in a manner similar to the mutant BR in aqueous suspension. Addition of guanidine, however, caused the immobilized BR to show kinetic parameters more closely related to the wild-type protein than the D96N mutant control. Samples of the aqueous suspension were characterized for particle size and particle size distribution. Dried samples of the immobilized BR were analyzed by field emission microscopy and BET to characterize both the purple membrane fragments and the sol-gel pore characteristics.  相似文献   

15.
We demonstrate a technique based on noise measurements which can be utilized to study dynamical processes in protein assembly. Direct visualization of dynamics in membrane protein system such as bacteriorhodopsin (bR) upon photostimulation are quite challenging. bR represents a model system where the stimulus-triggered structural dynamics and biological functions are directly correlated. Our method utilizes a pump-probe near field microscopy method in the transmission mode and involves analyzing the transmittance fluctuations from a finite size of molecular assembly. Probability density distributions indicating the effects of finite size and statistical correlations appear as a characteristic frequency distribution in the noise spectra of bR whose origin can be traced to photocycle kinetics. Valuable insight into the molecular processes were obtained from the noise studies of bR and its mutant D96N as a function of external parameters such as temperature, humidity or presence of an additional pump source.  相似文献   

16.
The study of mutant D96N played an important role in understanding proton translocation by light driven bacteriorhodopsin. Our measurement of photoelectric current for single and double flash illumination revealed new details of the photocycle of this mutant. With double flash excitation we found an intermediate absorbing near the wavelength of the ground state of bacteriorhodopsin (bR) but pumping in the opposite direction. This intermediate has the same lifetime as the species described by Zimányi et al. [Proc. Natl. Acad. Sci. USA 96 (1999) 4414-4419] and was assigned to early recovery of a fraction of the ground state after excitation. Because the electric response does not reconcile with that of the ground state, we tentatively assign it to the L intermediate or to an intermediate similar in absorption to bR (bR').  相似文献   

17.
Summary: Gelatin is widely used in capsules manufacturing. Most of the capsules in pharmaceutical applications are hard capsules made out of concentrated solutions of gelatin, where water has been progressively removed during the drying process. More recently soft capsules found an increasing interest in pharmaceutical and cosmetic applications where they are filled and sealed with a liquid substance. In order to keep the shells of capsules flexible after drying at room temperature, plasticizer is added to the gelatin aqueous solutions. We present in this paper a systematic investigation of gelatin films, equilibrated under a range of relative humidity (RH). The films contain glycerol as plasticizer P or only water and gelatin, (G). In order to analyze the role of the plasticizer, we fixed various P/G ratios and measured the water retention versus RH. Films were characterized by DSC (Mettler Toledo DSC823). Glass transition temperature Tg, melting temperature Tm and enthalpy associated with helix-coil transition were determined. The role of water and glycerol was examined in relation with the large variations of these transition temperatures with film composition. Non equilibrium effects are also discussed, in particular concerning the glass transition temperature, the relaxation effects and the water repartition between amorphous coils and helical structure. In conclusion, we propose a unique phase diagram of the gelatin films with any proportion of water and glycerol.  相似文献   

18.
The potential energy change during the M --> N process in bacteriorhodopsin has been evaluated by ab initio quantum chemical and advanced quantum chemical calculations following molecular dynamics (MD) simulations. Many previous experimental studies have suggested that the proton transfer from Asp96 to the Schiff base occurs under the following two conditions: (1) the hydrogen bond between Thr46 and Asp96 breaks and Thr46 is detached from Asp96 and (2) a stable chain of four water molecules spans an area from Asp96 --> Schiff base. In this work, we successfully reproduced the proton-transfer process occurring under these two conditions by molecular dynamics and quantum chemical calculations. The quantum chemical computation revealed that the proton transfer from Asp96 to Shiff base occurs in two-step reactions via an intermediate in which an H(3)O(+) appears around Ala215. The activation energy for the proton transfer in the first reaction was calculated to be 9.7 kcal/mol, which enables fast and efficient proton pump action. Further QM/MM (quantum mechanical/molecular mechanical) and FMO (fragment molecular orbital) calculations revealed that the potential energy change during the proton transfer is tightly regulated by the composition and the geometry of the surrounding amino acid residues of bacteriorhodopsin. Here, we report in detail the Asp96 --> Schiff base proton translocation mechanism of bacteriorhodopsin. Additionally, we discuss the effectiveness of combining quantum chemical calculations with truncated cluster models followed by advanced quantum chemical calculations applied to a whole protein to elucidate its reaction mechanism.  相似文献   

19.
All the intermediates of the bacteriorhodopsin photocycle are excitable with light of suitable wavelength. This property might regulate the activity in the cells when they are exposed in the nature to high light intensity. On the other hand this property is involved in many applications. In this study the ground state and M intermediate of dried oriented samples of wild-type bacteriorhodopsin and its mutant D96N were excited with 406 nm laser flashes. Substantial M populations were generated with quasi-continuous illumination. The decay of the absorption of M intermediate had three components: their lifetimes were very different for laser flash and quasi-continuous illuminations in cases of both bacteriorhodopsin species. The optical answer for the excitation of M intermediate had a lifetime of 2.2 ms. Electric signals for M excitation had large fast negative components and small positive components in the 100 μs time domain. The results are expected to have important implications for bioelectronic applications of bacteriorhodopsin.  相似文献   

20.
Structural changes in bacteriorhodopsin (bR) in two different processes of retinal reconstitutions were investigated by observing the 13C and 15N solid‐state NMR spectra of [1‐13C]Val‐ and [15N]Pro‐labeled bR. We found that NMR signals of the BC loop were sensitive to changes in protein structure and dynamics, from wild‐type (WT) bR to bacterio‐opsin (bO), regenerated bR and E1001 bR. Regenerated bR was prepared following the addition of retinal into bO obtained from photobleached WT‐bR. E1001 bR was cultured from a retinal‐deficient strain termed E1001 following the addition of retinal to growing cells. 15N NMR signal at Pro70 in the BC loop in WT‐bR was observed at 122.4 p.p.m., whereas signals were not apparent or partly suppressed in bO and regenerated bR, respectively. Similarly, the 13C NMR signal at Val69 in the BC loop at 172.0 p.p.m. that was observed in WT‐bR was significantly decreased in both regenerated bR and bO. These results suggest that the dynamic structure of the BC loop in bO was substantially altered following the removal of retinal. As a consequence, the correct protein structure failed to be recovered via the regenerating process of retinal to bO. On the other hand, 13C and 15N NMR signals at the BC loop in E1001 bR appeared at positions identical to those of WT‐bR. The results of the current study indicate that the BC loop may not always fold correctly in the regenerated bR, which leads to different properties in the regenerated bR compared to that of WT‐bR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号